The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A017534 a(n) = (12*n + 1)^2. 11
1, 169, 625, 1369, 2401, 3721, 5329, 7225, 9409, 11881, 14641, 17689, 21025, 24649, 28561, 32761, 37249, 42025, 47089, 52441, 58081, 64009, 70225, 76729, 83521, 90601, 97969, 105625, 113569, 121801 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,2
LINKS
FORMULA
G.f.: (1 + 166*x + 121*x^2 )/(1-x)^3. - R. J. Mathar, Mar 10 2011
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). - Vincenzo Librandi, Jul 07 2012
E.g.f.: (1 + 168*x + 144*x^2)*exp(x). - G. C. Greubel, Dec 24 2022
MATHEMATICA
CoefficientList[Series[(1+166*x+121*x^2)/(1-x)^3, {x, 0, 50}], x] (* Vincenzo Librandi, Jul 07 2012 *)
LinearRecurrence[{3, -3, 1}, {1, 169, 625}, 30] (* Harvey P. Dale, Feb 27 2023 *)
PROG
(Magma) I:=[1, 169, 625]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+Self(n-3): n in [1..50]]; // Vincenzo Librandi, Jul 07 2012
(PARI) a(n)=(12*n+1)^2 \\ Charles R Greathouse IV, Jun 17 2017
(SageMath) [(12*n+1)^2 for n in range(51)] # G. C. Greubel, Dec 24 2022
CROSSREFS
Sequences of the form (m*n+1)^2: A000012 (m=0), A000290 (m=1), A016754 (m=2), A016778 (m=3), A016814 (m=4), A016862 (m=5), A016922 (m=6), A016994 (m=7), A017078 (m=8), A017174 (m=9), A017282 (m=10), A017402 (m=11), this sequence (m=12), A134934 (m=14).
Cf. A082043.
Sequence in context: A305055 A069645 A294307 * A120904 A038596 A250988
KEYWORD
nonn,easy
AUTHOR
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 13 15:37 EDT 2024. Contains 373389 sequences. (Running on oeis4.)