|
|
A069645
|
|
Define sds(n) = sum of the squares of the digits of n. Sequence gives smaller of two consecutive squares with sds(k^2) = sds((k+1)^2).
|
|
1
|
|
|
169, 529, 841, 1681, 24649, 96721, 756900, 833569, 1478656, 1666681, 2972176, 3258025, 3617604, 5405625, 7166329, 8162449, 9721924, 9771876, 12404484, 13184161, 13380964, 13778944, 15776784, 17464041, 19079424, 20034576
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,1
|
|
COMMENTS
|
Is the sequence finite?
|
|
LINKS
|
Harvey P. Dale, Table of n, a(n) for n = 0..10000
|
|
EXAMPLE
|
sds(529) = 5^2 + 2^2 + 9^2 = 110 = sds(576) = 25 + 49 + 36.
|
|
MATHEMATICA
|
Flatten[Position[Partition[Total[IntegerDigits[#]^2]&/@(Range[ 5000]^2), 2, 1], _?(First[#]==Last[#]&), {1}, Heads->False]]^2 (* Harvey P. Dale, Jul 10 2014 *)
|
|
CROSSREFS
|
Sequence in context: A327652 A112076 A305055 * A294307 A017534 A120904
Adjacent sequences: A069642 A069643 A069644 * A069646 A069647 A069648
|
|
KEYWORD
|
nonn,base
|
|
AUTHOR
|
Amarnath Murthy, Apr 04 2002
|
|
EXTENSIONS
|
More terms from Jason Earls, May 10 2002
|
|
STATUS
|
approved
|
|
|
|