|
|
A305055
|
|
Numbers n such that the z-density of the integer partition with Heinz number n is 0.
|
|
2
|
|
|
1, 169, 481, 507, 793, 841, 845, 1157, 1183, 1369, 1443, 1469, 1521, 1849, 1963, 2059, 2209, 2257, 2353, 2379, 2405, 2523, 2535, 2899, 3211, 3263, 3277, 3293, 3367, 3471, 3549, 3653, 3721, 3887, 3965, 4107, 4121, 4181, 4225, 4329, 4394, 4407, 4563, 4601, 4667
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
COMMENTS
|
The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).
The z-density of a multiset S of positive integers is Sum_{s in S} (omega(s) - 1) - omega(lcm(S)) where omega = A001221 is number of distinct prime factors.
|
|
LINKS
|
Table of n, a(n) for n=1..45.
|
|
MATHEMATICA
|
zens[n_]:=If[n==1, 0, Total@Cases[FactorInteger[n], {p_, k_}:>k*(PrimeNu[PrimePi[p]]-1)]-PrimeNu[LCM@@Cases[FactorInteger[n], {p_, k_}:>PrimePi[p]]]];
Select[Range[1000], zens[#]==0&]
|
|
CROSSREFS
|
Cf. A001221, A030019, A048143, A056239, A112798, A290103, A302242, A303837, A304118, A304714, A304716, A305001, A305052, A305053, A305054.
Sequence in context: A351337 A327652 A112076 * A069645 A294307 A017534
Adjacent sequences: A305052 A305053 A305054 * A305056 A305057 A305058
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Gus Wiseman, May 24 2018
|
|
STATUS
|
approved
|
|
|
|