login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A305052
z-density of the integer partition with Heinz number n. Clutter density of the n-th multiset multisystem (A302242).
23
0, -1, -1, -2, -1, -2, -1, -3, -1, -2, -1, -3, -1, -2, -2, -4, -1, -2, -1, -3, -1, -2, -1, -4, -1, -2, -1, -3, -1, -3, -1, -5, -2, -2, -2, -3, -1, -2, -1, -4, -1, -2, -1, -3, -2, -2, -1, -5, -1, -2, -2, -3, -1, -2, -2, -4, -1, -2, -1, -4, -1, -2, -1, -6, -1, -3
OFFSET
1,4
COMMENTS
The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).
The z-density of a multiset S of positive integers is Sum_{s in S} (omega(s) - 1) - omega(lcm(S)) where omega = A001221 is number of distinct prime factors.
First nonnegative entry after a(1) = 0 is a(169) = 0.
EXAMPLE
The 1105th multiset multisystem is {{2},{1,2},{4}} with clutter density -2, so a(1105) = -2.
The 5429th multiset multisystem is {{1,2,2},{1,1,1,2}} with clutter density 0, so a(5429) = 0.
The 11837th multiset multisystem is {{1,1},{1,1,1},{1,1,1,2}} with clutter density -1, so a(11837) = -1.
The 42601th multiset multisystem is {{1,2},{1,3},{1,2,3}} with clutter density 1, so a(42601) = 1.
MATHEMATICA
zens[n_]:=If[n==1, 0, Total@Cases[FactorInteger[n], {p_, k_}:>k*(PrimeNu[PrimePi[p]]-1)]-PrimeNu[LCM@@Cases[FactorInteger[n], {p_, k_}:>PrimePi[p]]]];
Array[zens, 100]
KEYWORD
sign
AUTHOR
Gus Wiseman, May 24 2018
STATUS
approved