The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A304118 Number of z-blobs with least common multiple n > 1. 22
0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 7, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 3, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 7, 1, 1, 1, 1 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,30
COMMENTS
Given a finite set S of positive integers greater than 1, let G(S) be the simple labeled graph with vertex set S and edges between any two vertices that have a common divisor greater than 1. For example, G({6,14,15,35}) is a 4-cycle. A set S is said to be connected if G(S) is a connected graph. The clutter density of S is defined to be Sum_{s in S} (omega(s) - 1) - omega(LCM(S)), where omega = A001221 and LCM is least common multiple. A z-blob is a finite connected set S of pairwise indivisible positive integers greater than 1 such that no cap of S with at least two edges has clutter density -1.
If n is squarefree with k prime factors, then a(n) = A275307(k).
LINKS
Gus Wiseman, Every Clutter Is a Tree of Blobs, The Mathematica Journal, Vol. 19, 2017.
EXAMPLE
The a(60) = 7 z-blobs together with the corresponding multiset systems (see A112798, A302242) are the following.
(60): {{1,1,2,3}}
(12,30): {{1,1,2},{1,2,3}}
(20,30): {{1,1,3},{1,2,3}}
(6,15,20): {{1,2},{2,3},{1,1,3}}
(10,12,15): {{1,3},{1,1,2},{2,3}}
(12,15,20): {{1,1,2},{2,3},{1,1,3}}
(12,20,30): {{1,1,2},{1,1,3},{1,2,3}}
The a(120) = 14 z-blobs together with the corresponding multiset systems are the following.
(120): {{1,1,1,2,3}}
(24,30): {{1,1,1,2},{1,2,3}}
(24,60): {{1,1,1,2},{1,1,2,3}}
(30,40): {{1,2,3},{1,1,1,3}}
(40,60): {{1,1,1,3},{1,1,2,3}}
(6,15,40): {{1,2},{2,3},{1,1,1,3}}
(10,15,24): {{1,3},{2,3},{1,1,1,2}}
(12,15,40): {{1,1,2},{2,3},{1,1,1,3}}
(12,30,40): {{1,1,2},{1,2,3},{1,1,1,3}}
(15,20,24): {{2,3},{1,1,3},{1,1,1,2}}
(15,24,40): {{2,3},{1,1,1,2},{1,1,1,3}}
(20,24,30): {{1,1,3},{1,1,1,2},{1,2,3}}
(24,30,40): {{1,1,1,2},{1,2,3},{1,1,1,3}}
(24,40,60): {{1,1,1,2},{1,1,1,3},{1,1,2,3}}
MATHEMATICA
zsm[s_]:=With[{c=Select[Tuples[Range[Length[s]], 2], And[Less@@#, GCD@@s[[#]]]>1&]}, If[c=={}, s, zsm[Union[Append[Delete[s, List/@c[[1]]], LCM@@s[[c[[1]]]]]]]]];
zensity[s_]:=Total[(PrimeNu[#]-1&)/@s]-PrimeNu[LCM@@s];
zreeQ[s_]:=And[Length[s]>=2, zensity[s]==-1];
zlobQ[s_]:=Apply[And, Composition[Not, zreeQ]/@Apply[LCM, zptns[s], {2}]];
zswell[s_]:=Union[LCM@@@Select[Subsets[s], Length[zsm[#]]==1&]];
zkernels[s_]:=Table[Select[s, Divisible[w, #]&], {w, zswell[s]}];
zptns[s_]:=Select[stableSets[zkernels[s], Length[Intersection[#1, #2]]>0&], Union@@#==s&];
stableSets[u_, Q_]:=If[Length[u]==0, {{}}, With[{w=First[u]}, Join[stableSets[DeleteCases[u, w], Q], Prepend[#, w]&/@stableSets[DeleteCases[u, r_/; r==w||Q[r, w]||Q[w, r]], Q]]]];
Table[If[n==1, 0, Length[Select[Rest[Subsets[Rest[Divisors[n]]]], And[zsm[#]=={n}, Select[Tuples[#, 2], UnsameQ@@#&&Divisible@@#&]=={}, zlobQ[#]]&]]], {n, 100}]
CROSSREFS
Sequence in context: A031264 A345045 A318809 * A319679 A364388 A242073
KEYWORD
nonn
AUTHOR
Gus Wiseman, May 19 2018
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 20 05:07 EDT 2024. Contains 372703 sequences. (Running on oeis4.)