OFFSET
1,4
COMMENTS
Given a finite set S of positive integers greater than one, let G(S) be the simple labeled graph with vertex set S and edges between any two vertices that are not relatively prime. For example, G({6,14,15,35}) is a 4-cycle. A set S is said to be connected if G(S) is a connected graph.
a(n) depends only on prime signature of n (cf. A025487). - Antti Karttunen, Feb 17 2024
LINKS
FORMULA
From Antti Karttunen, Feb 17 2024: (Start)
a(n) <= A069626(n).
It seems that a(n) >= A318670(n), for all n > 1.
(End)
EXAMPLE
The a(6)=4 sets are: {6}, {2,6}, {3,6}, {2,3,6}.
MATHEMATICA
zsm[s_]:=With[{c=Select[Tuples[Range[Length[s]], 2], And[Less@@#, GCD@@s[[#]]]>1&]}, If[c==={}, s, zsm[Union[Append[Delete[s, List/@c[[1]]], LCM@@s[[c[[1]]]]]]]]];
Table[Length[Select[Subsets[Rest[Divisors[n]]], zsm[#]==={n}&]], {n, 2, 20}]
PROG
(PARI)
isconnected(facs) = { my(siz=length(facs)); if(1==siz, 1, my(m=matrix(siz, siz, i, j, (gcd(facs[i], facs[j])!=1))^siz); for(n=1, siz, if(0==vecmin(m[n, ]), return(0))); (1)); };
A286518aux(n, parts, from=1, ss=List([])) = { my(k = #parts, s=0, newss); if(lcm(Vec(ss))==n && isconnected(ss), s++); for(i=from, k, newss = List(ss); listput(newss, parts[i]); s += A286518aux(n, parts, i+1, newss)); (s) };
A286518(n) = if(1==n, n, A286518aux(n, divisors(n))); \\ Antti Karttunen, Feb 17 2024
CROSSREFS
KEYWORD
nonn
AUTHOR
Gus Wiseman, Jul 24 2017
EXTENSIONS
Term a(1)=1 prepended and more terms added by Antti Karttunen, Feb 17 2024
STATUS
approved