This site is supported by donations to The OEIS Foundation.

 Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing. Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A286518 Number of finite connected sets of positive integers greater than one with least common multiple n. 38
 1, 1, 2, 1, 4, 1, 4, 2, 4, 1, 20, 1, 4, 4, 8, 1, 20, 1, 20, 4, 4, 1, 88, 2, 4, 4, 20, 1, 96, 1, 16, 4, 4, 4, 196, 1, 4, 4, 88, 1, 96, 1, 20, 20, 4, 1, 368, 2, 20, 4, 20, 1, 88, 4, 88, 4, 4, 1, 1824, 1, 4, 20, 32, 4, 96, 1, 20, 4, 96, 1, 1688, 1, 4, 20, 20 (list; graph; refs; listen; history; text; internal format)
 OFFSET 2,3 COMMENTS Given a finite set S of positive integers greater than one, let G(S) be the simple labeled graph with vertex set S and edges between any two vertices that are not relatively prime. For example, G({6,14,15,35}) is a 4-cycle. A set S is said to be connected if G(S) is a connected graph. LINKS EXAMPLE The a(6)=4 sets are: {6}, {2,6}, {3,6}, {2,3,6}. MATHEMATICA zsm[s_]:=With[{c=Select[Tuples[Range[Length[s]], 2], And[Less@@#, GCD@@s[[#]]]>1&]}, If[c==={}, s, zsm[Union[Append[Delete[s, List/@c[[1]]], LCM@@s[[c[[1]]]]]]]]]; Table[Length[Select[Subsets[Rest[Divisors[n]]], zsm[#]==={n}&]], {n, 2, 20}] CROSSREFS Cf. A048143, A054921, A076078, A259936, A281116, A285572, A285573, A286520. Sequence in context: A168177 A216864 A263432 * A029205 A229340 A322968 Adjacent sequences:  A286515 A286516 A286517 * A286519 A286520 A286521 KEYWORD nonn AUTHOR Gus Wiseman, Jul 24 2017 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 15 17:03 EST 2019. Contains 330000 sequences. (Running on oeis4.)