login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A286518
Number of finite connected sets of positive integers greater than one with least common multiple n.
40
1, 1, 1, 2, 1, 4, 1, 4, 2, 4, 1, 20, 1, 4, 4, 8, 1, 20, 1, 20, 4, 4, 1, 88, 2, 4, 4, 20, 1, 96, 1, 16, 4, 4, 4, 196, 1, 4, 4, 88, 1, 96, 1, 20, 20, 4, 1, 368, 2, 20, 4, 20, 1, 88, 4, 88, 4, 4, 1, 1824, 1, 4, 20, 32, 4, 96, 1, 20, 4, 96, 1, 1688, 1, 4, 20, 20, 4, 96, 1, 368, 8, 4, 1, 1824, 4, 4, 4, 88, 1, 1824, 4, 20
OFFSET
1,4
COMMENTS
Given a finite set S of positive integers greater than one, let G(S) be the simple labeled graph with vertex set S and edges between any two vertices that are not relatively prime. For example, G({6,14,15,35}) is a 4-cycle. A set S is said to be connected if G(S) is a connected graph.
a(n) depends only on prime signature of n (cf. A025487). - Antti Karttunen, Feb 17 2024
FORMULA
From Antti Karttunen, Feb 17 2024: (Start)
a(n) <= A069626(n).
It seems that a(n) >= A318670(n), for all n > 1.
(End)
EXAMPLE
The a(6)=4 sets are: {6}, {2,6}, {3,6}, {2,3,6}.
MATHEMATICA
zsm[s_]:=With[{c=Select[Tuples[Range[Length[s]], 2], And[Less@@#, GCD@@s[[#]]]>1&]}, If[c==={}, s, zsm[Union[Append[Delete[s, List/@c[[1]]], LCM@@s[[c[[1]]]]]]]]];
Table[Length[Select[Subsets[Rest[Divisors[n]]], zsm[#]==={n}&]], {n, 2, 20}]
PROG
(PARI)
isconnected(facs) = { my(siz=length(facs)); if(1==siz, 1, my(m=matrix(siz, siz, i, j, (gcd(facs[i], facs[j])!=1))^siz); for(n=1, siz, if(0==vecmin(m[n, ]), return(0))); (1)); };
A286518aux(n, parts, from=1, ss=List([])) = { my(k = #parts, s=0, newss); if(lcm(Vec(ss))==n && isconnected(ss), s++); for(i=from, k, newss = List(ss); listput(newss, parts[i]); s += A286518aux(n, parts, i+1, newss)); (s) };
A286518(n) = if(1==n, n, A286518aux(n, divisors(n))); \\ Antti Karttunen, Feb 17 2024
KEYWORD
nonn
AUTHOR
Gus Wiseman, Jul 24 2017
EXTENSIONS
Term a(1)=1 prepended and more terms added by Antti Karttunen, Feb 17 2024
STATUS
approved