login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A216864
Number of squares that divide the product of divisors of n.
2
1, 1, 1, 2, 1, 4, 1, 4, 2, 4, 1, 8, 1, 4, 4, 6, 1, 8, 1, 8, 4, 4, 1, 21, 2, 4, 4, 8, 1, 27, 1, 8, 4, 4, 4, 25, 1, 4, 4, 21, 1, 27, 1, 8, 8, 4, 1, 33, 2, 8, 4, 8, 1, 21, 4, 21, 4, 4, 1, 112, 1, 4, 8, 11, 4, 27, 1, 8, 4, 27, 1, 70, 1, 4, 8, 8, 4, 27, 1, 33
OFFSET
1,4
LINKS
FORMULA
a(n) = A046951(A007955(n)).
a(n) = Product_{i=1..k} (1+floor(M*e_i/4)), for n>1, where the prime factorization of n is p_1^e_1*...*p_k^e_k and M = Product_{i=1..k}(1+e_i). - Giovanni Resta, May 31 2015
EXAMPLE
For n=28, the divisors are 1, 2, 4, 7, 14, 28. The product of these is 2^6*7^3. The sequence entry a(28) = 8 counts the squares 1, 7^2, 2^2, 2^2*7^2, 2^4, 2^4*7^2, 2^6 and 2^6*7^2, all of which divide 2^6*7^3.
MAPLE
A216864 := proc(n)
end proc:
seq(A216864(n), n=1..80) ; # R. J. Mathar, Sep 18 2012
MATHEMATICA
Table[Length[Select[Divisors[Times @@ Divisors[n]], IntegerQ[Sqrt[#]] &]], {n, 100}] (* T. D. Noe, Sep 18 2012 *)
a[n_] := Block[{e = Last /@ FactorInteger[n]}, Times @@ (1 + Floor[e * Times @@ (1 + e)/4])]; Array[a, 1000] (* Giovanni Resta, May 31 2015 *)
PROG
(PARI) a(n) = {my(d = divisors(n)); my(pd = prod(k=1, #d, d[k])); sumdiv(pd, dd, issquare(dd)); } \\ Michel Marcus, May 31 2015
CROSSREFS
Cf. A216677.
Sequence in context: A053578 A368201 A168177 * A337175 A263432 A286518
KEYWORD
nonn
AUTHOR
R. J. Mathar, Sep 18 2012
STATUS
approved