login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A053578
Values of cototient function for A053577.
2
1, 1, 2, 1, 4, 1, 4, 1, 8, 1, 8, 8, 1, 1, 1, 16, 16, 1, 1, 16, 1, 1, 1, 1, 32, 1, 32, 1, 1, 32, 32, 1, 1, 1, 1, 1, 1, 64, 1, 1, 1, 1, 1, 64, 1, 64, 1, 64, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 128, 1, 1, 1, 1, 1, 128, 1, 1, 1, 1, 1, 128, 1, 128, 128, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
OFFSET
1,3
COMMENTS
Except for 2^0 = 1, there are only finitely many values of k such that cototient(k) = 2^m for fixed m.
LINKS
EXAMPLE
For p prime, cototient(p) = 1. Smallest values for which cototient(x) = 2^w are A058764(w) = A007283(w-1) = 3*2^(w-1) = 6, 12, 24, 48, 96, 192, .., 49152 for w = 2, 3, 4, 5, 6, ..., 15. [Corrected by M. F. Hasler, Nov 10 2016]
MATHEMATICA
Select[Table[k - EulerPhi[k], {k, 1, 400}], # == 2^IntegerExponent[#, 2] &] (* Amiram Eldar, Jun 09 2024 *)
PROG
(PARI) lista(kmax) = {my(c); for(k = 2, kmax, c = k - eulerphi(k); if(c >> valuation(c, 2) == 1, print1(c, ", "))); } \\ Amiram Eldar, Jun 09 2024
CROSSREFS
KEYWORD
nonn
AUTHOR
Labos Elemer, Jan 18 2000
EXTENSIONS
Edited and corrected by M. F. Hasler, Nov 10 2016
STATUS
approved