OFFSET
1,3
COMMENTS
Except for 2^0 = 1, there are only finitely many values of k such that cototient(k) = 2^m for fixed m.
LINKS
Amiram Eldar, Table of n, a(n) for n = 1..10000
EXAMPLE
For p prime, cototient(p) = 1. Smallest values for which cototient(x) = 2^w are A058764(w) = A007283(w-1) = 3*2^(w-1) = 6, 12, 24, 48, 96, 192, .., 49152 for w = 2, 3, 4, 5, 6, ..., 15. [Corrected by M. F. Hasler, Nov 10 2016]
MATHEMATICA
Select[Table[k - EulerPhi[k], {k, 1, 400}], # == 2^IntegerExponent[#, 2] &] (* Amiram Eldar, Jun 09 2024 *)
PROG
(PARI) lista(kmax) = {my(c); for(k = 2, kmax, c = k - eulerphi(k); if(c >> valuation(c, 2) == 1, print1(c, ", "))); } \\ Amiram Eldar, Jun 09 2024
CROSSREFS
KEYWORD
nonn
AUTHOR
Labos Elemer, Jan 18 2000
EXTENSIONS
Edited and corrected by M. F. Hasler, Nov 10 2016
STATUS
approved