login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A058764
Smallest number x such that cototient(x) = 2^n.
8
2, 4, 6, 12, 24, 48, 96, 192, 384, 768, 1536, 3072, 6144, 12288, 24576, 49152, 98304, 196608, 393216, 786432, 1572864, 3145728, 6291456, 12582912, 25165824, 50331648, 100663296, 201326592, 402653184, 805306368, 1610612736, 3221225472
OFFSET
0,1
COMMENTS
Since the cototient of 3*2^n is 2^(n+1), upper bounds are given by A007283(n-1). - R. J. Mathar, Oct 13 2008
A058764(n+1) is the number of different walks with n steps in the graph G = ({1,2,3,4}, {{1,2}, {2,3}, {3,4}}). - Aldo González Lorenzo, Feb 27 2012
LINKS
FORMULA
a(n) = min { x | A051953(x) = 2^n }.
a(n) = (if n>1 then 3 else 4)*2^(n-1) = A007283(n-1) for n>1. (Conjectured.) - M. F. Hasler, Nov 10 2016
EXAMPLE
a(5) = 48, cototient(48) = 48-Phi(48) = 48-16 = 32. For n>2, a(n) = 3*2^(n-1); largest solutions = 2^(n+1). Prime factors of solutions: 2 and Mersenne-primes were found only.
MATHEMATICA
Function[s, Flatten@ Map[First@ Position[s, #] &, 2^Range[0, Floor@ Log2@ Max@ s]]]@ Table[n - EulerPhi@ n, {n, 10^7}] (* Michael De Vlieger, Dec 17 2016 *)
PROG
(PARI) a(n) = {x = 1; while(x - eulerphi(x) != 2^n, x++); x; } \\ Michel Marcus, Dec 11 2013
(PARI) a(n) = if(n>1, 3, 4)<<(n-1) \\ M. F. Hasler, Nov 10 2016
CROSSREFS
Cf. A042950. - R. J. Mathar, Jan 30 2009
Cf. A007283.
Sequence in context: A115387 A095849 A094783 * A087009 A168263 A356573
KEYWORD
nonn,hard
AUTHOR
Labos Elemer, Jan 02 2001
EXTENSIONS
Edited by M. F. Hasler, Nov 10 2016
a(27)-a(31) from Jud McCranie, Jul 13 2017
STATUS
approved