OFFSET
0,1
COMMENTS
Since the cototient of 3*2^n is 2^(n+1), upper bounds are given by A007283(n-1). - R. J. Mathar, Oct 13 2008
A058764(n+1) is the number of different walks with n steps in the graph G = ({1,2,3,4}, {{1,2}, {2,3}, {3,4}}). - Aldo González Lorenzo, Feb 27 2012
LINKS
Jud McCranie, Table of n, a(n) for n = 0..46
FORMULA
a(n) = min { x | A051953(x) = 2^n }.
a(n) = (if n>1 then 3 else 4)*2^(n-1) = A007283(n-1) for n>1. (Conjectured.) - M. F. Hasler, Nov 10 2016
EXAMPLE
a(5) = 48, cototient(48) = 48-Phi(48) = 48-16 = 32. For n>2, a(n) = 3*2^(n-1); largest solutions = 2^(n+1). Prime factors of solutions: 2 and Mersenne-primes were found only.
MATHEMATICA
Function[s, Flatten@ Map[First@ Position[s, #] &, 2^Range[0, Floor@ Log2@ Max@ s]]]@ Table[n - EulerPhi@ n, {n, 10^7}] (* Michael De Vlieger, Dec 17 2016 *)
PROG
(PARI) a(n) = {x = 1; while(x - eulerphi(x) != 2^n, x++); x; } \\ Michel Marcus, Dec 11 2013
(PARI) a(n) = if(n>1, 3, 4)<<(n-1) \\ M. F. Hasler, Nov 10 2016
CROSSREFS
KEYWORD
nonn,hard
AUTHOR
Labos Elemer, Jan 02 2001
EXTENSIONS
Edited by M. F. Hasler, Nov 10 2016
a(27)-a(31) from Jud McCranie, Jul 13 2017
STATUS
approved