The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A058764 Smallest number x such that cototient(x) = 2^n. 8
 2, 4, 6, 12, 24, 48, 96, 192, 384, 768, 1536, 3072, 6144, 12288, 24576, 49152, 98304, 196608, 393216, 786432, 1572864, 3145728, 6291456, 12582912, 25165824, 50331648, 100663296, 201326592, 402653184, 805306368, 1610612736, 3221225472 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 COMMENTS Since the cototient of 3*2^n is 2^(n+1), upper bounds are given by A007283(n-1). - R. J. Mathar, Oct 13 2008 A058764(n+1) is the number of different walks with n steps in the graph G = ({1,2,3,4}, {{1,2}, {2,3}, {3,4}}). - Aldo González Lorenzo, Feb 27 2012 LINKS Jud McCranie, Table of n, a(n) for n = 0..46 FORMULA a(n) = min { x | A051953(x) = 2^n }. a(n) = (if n>1 then 3 else 4)*2^(n-1) = A007283(n-1) for n>1. (Conjectured.) - M. F. Hasler, Nov 10 2016 EXAMPLE a(5) = 48, cototient(48) = 48-Phi(48) = 48-16 = 32. For n>2, a(n) = 3*2^(n-1); largest solutions = 2^(n+1). Prime factors of solutions: 2 and Mersenne-primes were found only. MATHEMATICA Function[s, Flatten@ Map[First@ Position[s, #] &, 2^Range[0, Floor@ Log2@ Max@ s]]]@ Table[n - EulerPhi@ n, {n, 10^7}] (* Michael De Vlieger, Dec 17 2016 *) PROG (PARI) a(n) = {x = 1; while(x - eulerphi(x) != 2^n, x++); x; } \\ Michel Marcus, Dec 11 2013 (PARI) a(n) = if(n>1, 3, 4)<<(n-1) \\ M. F. Hasler, Nov 10 2016 CROSSREFS Cf. A051953, A053579, A053650. Cf. A042950. - R. J. Mathar, Jan 30 2009 Cf. A007283. Sequence in context: A115387 A095849 A094783 * A087009 A168263 A356573 Adjacent sequences: A058761 A058762 A058763 * A058765 A058766 A058767 KEYWORD nonn,hard AUTHOR Labos Elemer, Jan 02 2001 EXTENSIONS Edited by M. F. Hasler, Nov 10 2016 a(27)-a(31) from Jud McCranie, Jul 13 2017 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 22 07:42 EDT 2024. Contains 374481 sequences. (Running on oeis4.)