OFFSET
-1,7
COMMENTS
Also McKay-Thompson series of class 87B for Monster. - Michel Marcus, Feb 24 2014
LINKS
G. C. Greubel, Table of n, a(n) for n = -1..1000
D. Ford, J. McKay and S. P. Norton, More on replicable functions, Commun. Algebra 22, No. 13, 5175-5193 (1994).
David A. Madore, Coefficients of Moonshine (McKay-Thompson) series, The Math Forum.
FORMULA
Expansion of (1/4)*( -3 - T29A(q) - T29A(q^3) + sqrt((3 + T29A(q) + T29A(q^2))^2 + 8*(T29A(q)*T29A(q^3) - 3)) ) in powers of q, where T29A(q) is the g.f. of A058611. - G. C. Greubel, Jul 01 2018 [Corrected by Sean A. Irvine, Sep 16 2020]
a(n) ~ exp(4*Pi*sqrt(n/87)) / (sqrt(2) * 87^(1/4) * n^(3/4)). - Vaclav Kotesovec, Jul 02 2018
EXAMPLE
T87A = 1/q + q^2 + q^3 + q^4 + 2*q^5 + q^6 + 2*q^7 + 2*q^8 + 2*q^9 + 2*q^10 + ...
MATHEMATICA
QP := QPochhammer; nmax = 100;
f[x_, y_] := QP[-x, x*y]*QP[-y, x*y]* QP[x*y, x*y];
G[x_] := f[-x^2, -x^3]/f[-x, -x^2];
H[x_] := f[-x, -x^4]/f[-x, -x^2];
A := G[x^29]*G[x] + x^6*H[x^29]*H[x];
T29A := -2 + A^2/x;
T87A := (1/4)*( -3 - T29A - (T29A/.{x -> x^3}) + ((3 + T29A + (T29A/.{x -> x^3}))^2 + 8*( T29A*(T29A /. {x -> x^3}) - 3) + O[x]^nmax)^(1/2) );
a:= CoefficientList[Series[x*T87A, {x, 0, nmax}], x];
Table[a[[n]], {n, 1, nmax}] (* G. C. Greubel, Jul 01 2018 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Nov 27 2000
EXTENSIONS
More terms from Michel Marcus, Feb 24 2014
STATUS
approved