login
A168177
Number of prime factors of n! + 2^n - 1, counted with multiplicity.
2
1, 1, 1, 2, 1, 4, 1, 4, 2, 4, 1, 5, 4, 4, 4, 4, 2, 7, 2, 8, 4, 3, 3, 7, 3, 3, 5, 6, 5, 7, 3, 7, 5, 6, 3, 10, 5, 8, 4, 8, 7, 7, 9, 6, 5, 5, 4, 11, 5, 6, 3, 6, 4, 9, 6, 11, 5, 2, 4, 15, 2, 6, 5, 8, 5, 7, 4, 5, 7, 9, 2, 13, 7, 5, 8, 6, 4, 7, 3, 11, 5, 3, 3, 11, 6
OFFSET
1,4
LINKS
Florian Luca and Igor E. Shparlinski, On the largest prime factor of n! + 2^n - 1, Journal de Théorie des Nombres de Bordeaux 17 (2005), 859-870.
FORMULA
a(n) = A001222(A127986(n)). - Amiram Eldar, Feb 05 2020
EXAMPLE
6! + 2^6 - 1 = 783 = 3^3 * 29, hence a(6) = 4.
MATHEMATICA
PrimeOmega @ Table[n! + 2^n - 1, {n, 1, 30}] (* Amiram Eldar, Feb 05 2020 *)
PROG
(Magma) pfmult := func< n | &+[ d[2]: d in Factorization(n) ] >; [ pfmult(Factorial(n)+2^n-1): n in [1..50] ]; //Some values were computed using Dario Alpern's ECM Factorization Program.
(PARI) a(n)=bigomega(n!+2^n-1) \\ Charles R Greathouse IV, Feb 01 2013
CROSSREFS
Cf. A001222, A127986 (n!+2^n-1), A139024 (number of distinct prime factors), A139023 (smallest prime factor), A127987 (largest prime factor).
Sequence in context: A193306 A053578 A368201 * A216864 A337175 A263432
KEYWORD
nonn
AUTHOR
Klaus Brockhaus, Nov 20 2009
EXTENSIONS
a(76)-a(81) from Amiram Eldar, Feb 05 2020
a(82) onwards from Kevin P. Thompson, Jun 29 2022
STATUS
approved