

A193306


Number of 'Reverse and Subtract' steps needed to reach 0, or 1 if never reaches 0, using base 1+i and subtracting the reversed number from original.


3



0, 1, 2, 1, 4, 1, 4, 1, 4, 1, 4, 3, 1, 1, 4, 1, 1, 1, 4, 1, 1, 1, 4, 1, 2, 11, 1, 1, 2, 11, 1, 1, 1, 1, 12, 11, 1, 3, 2, 1, 6, 1, 1, 1, 1, 1, 12, 11, 4, 1, 1, 1, 8, 5, 1, 3, 1, 3, 6, 1, 4, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 3, 2, 1, 2
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,3


LINKS

Kerry Mitchell, Table of n, a(n) for n = 0..10000
W. J. Gilbert, Arithmetic in Complex Bases, Mathematics Magazine, Vol. 57, No. 2 (Mar., 1984), pp. 7781.


EXAMPLE

Decimal 2 is 10 in binary, which is 1+i using complex base 1+i. Reversing 10 gives 01, or 1+0i. Subtracting the reversed from the original results in 2+i, or 11111 using the complex base. Its reversal is the same, so subtracting them gives 0. Decimal 2 took 2 steps to reach 0, so a(2) = 2.


CROSSREFS

Cf A193239, number of steps needed to reach a palindrome with complex base 1+i. A193307, Number of 'Reverse and Subtract' steps needed to reach 0, or 1 if never reaches 0, using base 1+i and subtracting the original number from the reversed.
Sequence in context: A210445 A126210 A040005 * A053578 A168177 A216864
Adjacent sequences: A193303 A193304 A193305 * A193307 A193308 A193309


KEYWORD

sign,base


AUTHOR

Kerry Mitchell, Jul 22 2011


STATUS

approved



