OFFSET
1,3
COMMENTS
Conjecture: a(n) < n for all n>1, and a(n) < n/2 for all n>47.
Large values are obtained for prime n: The corresponding subsequence is a(p(n)) = (1, 2, 4, 4, 6, 6, 12, 12, 12, 12, 16, 18, 20, 20, 24, 24, 24, 24, ...), while for composite indices, a(c(n)) = (1, 1, 1, 1, 2, 2, 1, 2, 2, 1, 1, 1, 2, 3, 1, 4, 3, 2, 1, 1, 1, 2, ...). - M. F. Hasler, Jan 21 2013
LINKS
Zhi-Wei Sun, Table of n, a(n) for n = 1..10000
G. Melfi, On two conjectures about practical numbers, J. Number Theory 56 (1996) 205-210 [MR96i:11106].
Zhi-Wei Sun, Conjectures involving primes and quadratic forms, arXiv:1211.1588 [math.NT], 2012-2015.
FORMULA
a(n) = 1 iff n is in A005153, therefore a(n) > 1 for all odd n>1. - M. F. Hasler, Jan 21 2013
EXAMPLE
a(10)=2 since 2*10=20 is practical but 1*10=10 is not.
MATHEMATICA
f[n_]:=f[n]=FactorInteger[n]
Pow[n_, i_]:=Pow[n, i]=Part[Part[f[n], i], 1]^(Part[Part[f[n], i], 2])
Con[n_]:=Con[n]=Sum[If[Part[Part[f[n], s+1], 1]<=DivisorSigma[1, Product[Pow[n, i], {i, 1, s}]]+1, 0, 1], {s, 1, Length[f[n]]-1}]
pr[n_]:=pr[n]=n>0&&(n<3||Mod[n, 2]+Con[n]==0)
Do[Do[If[pr[k*n]==True, Print[n, " ", k]; Goto[aa]], {k, 1, n}];
Print[n, " ", counterexample]; Label[aa]; Continue, {n, 1, 100}]
PROG
(PARI) A210445(n)={for(k=1, n, is_A005153(k*n)&&return(k))} \\ (Would return 0 if a(n)>n.) - M. F. Hasler, Jan 20 2013
CROSSREFS
KEYWORD
nonn,nice
AUTHOR
Zhi-Wei Sun, Jan 20 2013
STATUS
approved