OFFSET
1,2
COMMENTS
Conjecture: a(n)>0 for all n>0.
The author has verified this for n up to 10^8, and also guessed the following refinement: If n>6 is not among 20, 104, 272, 464, 1664, then n can be written as p+q with p an even practical number and q a positive triangular number.
Somu and Tran (2024) proved the conjecture that a(n)>0 for n>0. - Duc Van Khanh Tran, Apr 24 2024
LINKS
Zhi-Wei Sun, Table of n, a(n) for n = 1..50000
Giuseppe Melfi, On two conjectures about practical numbers, J. Number Theory 56 (1996) 205-210 [MR96i:11106].
Sai Teja Somu and Duc Van Khanh Tran, On Sums of Practical Numbers and Polygonal Numbers, arXiv:2403.13533 [math.NT], 2024.
Zhi-Wei Sun, On sums of primes and triangular numbers, J. Comb. Number Theory 1(2009), 65-76.
Zhi-Wei Sun, Conjectures involving primes and quadratic forms, arxiv:1211.1588 [math.NT], 2012-2017.
EXAMPLE
a(15)=1 since 15=12+3 with 12 a practical number and 3 a triangular number.
MATHEMATICA
f[n_]:=f[n]=FactorInteger[n]
Pow[n_, i_]:=Pow[n, i]=Part[Part[f[n], i], 1]^(Part[Part[f[n], i], 2])
Con[n_]:=Con[n]=Sum[If[Part[Part[f[n], s+1], 1]<=DivisorSigma[1, Product[Pow[n, i], {i, 1, s}]]+1, 0, 1], {s, 1, Length[f[n]]-1}]
pr[n_]:=pr[n]=n>0&&(n<3||Mod[n, 2]+Con[n]==0)
a[n_]:=a[n]=Sum[If[pr[n-k(k+1)/2]==True, 1, 0], {k, 0, (Sqrt[8n+1]-1)/2}]
Do[Print[n, " ", a[n]], {n, 1, 100}]
CROSSREFS
KEYWORD
nonn,look
AUTHOR
Zhi-Wei Sun, Jan 11 2013
STATUS
approved