login
A208244
Number of ways to write n as the sum of a practical number (A005153) and a triangular number (A000217).
21
1, 2, 1, 2, 2, 1, 3, 2, 2, 1, 2, 3, 1, 2, 1, 3, 2, 3, 3, 1, 3, 3, 3, 2, 2, 2, 3, 2, 3, 4, 3, 2, 4, 3, 2, 3, 3, 3, 3, 4, 2, 4, 3, 2, 3, 4, 2, 4, 3, 1, 4, 3, 2, 3, 2, 4, 6, 2, 2, 4, 4, 1, 5, 4, 2, 4, 4, 3, 4, 4, 2, 4, 3, 2, 5, 3, 2, 4, 4, 2, 5, 4, 2, 6, 4, 3, 5, 3, 1, 6, 3, 3, 5, 5, 3, 5, 3, 3, 5, 4
OFFSET
1,2
COMMENTS
Conjecture: a(n)>0 for all n>0.
The author has verified this for n up to 10^8, and also guessed the following refinement: If n>6 is not among 20, 104, 272, 464, 1664, then n can be written as p+q with p an even practical number and q a positive triangular number.
Somu and Tran (2024) proved the conjecture that a(n)>0 for n>0. - Duc Van Khanh Tran, Apr 24 2024
LINKS
Giuseppe Melfi, On two conjectures about practical numbers, J. Number Theory 56 (1996) 205-210 [MR96i:11106].
Sai Teja Somu and Duc Van Khanh Tran, On Sums of Practical Numbers and Polygonal Numbers, arXiv:2403.13533 [math.NT], 2024.
Zhi-Wei Sun, On sums of primes and triangular numbers, J. Comb. Number Theory 1(2009), 65-76.
Zhi-Wei Sun, Conjectures involving primes and quadratic forms, arxiv:1211.1588 [math.NT], 2012-2017.
EXAMPLE
a(15)=1 since 15=12+3 with 12 a practical number and 3 a triangular number.
MATHEMATICA
f[n_]:=f[n]=FactorInteger[n]
Pow[n_, i_]:=Pow[n, i]=Part[Part[f[n], i], 1]^(Part[Part[f[n], i], 2])
Con[n_]:=Con[n]=Sum[If[Part[Part[f[n], s+1], 1]<=DivisorSigma[1, Product[Pow[n, i], {i, 1, s}]]+1, 0, 1], {s, 1, Length[f[n]]-1}]
pr[n_]:=pr[n]=n>0&&(n<3||Mod[n, 2]+Con[n]==0)
a[n_]:=a[n]=Sum[If[pr[n-k(k+1)/2]==True, 1, 0], {k, 0, (Sqrt[8n+1]-1)/2}]
Do[Print[n, " ", a[n]], {n, 1, 100}]
CROSSREFS
KEYWORD
nonn,look
AUTHOR
Zhi-Wei Sun, Jan 11 2013
STATUS
approved