This site is supported by donations to The OEIS Foundation.

 Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing. Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A208247 Numbers having exactly one partition into two prime powers. 2
 2, 3, 119, 127, 163, 179, 191, 193, 217, 219, 221, 223, 239, 251, 269, 311, 337, 343, 389, 403, 415, 419, 427, 431, 457, 491, 505, 547, 557, 569, 575, 581, 583, 597, 599, 613, 653, 659, 667, 671, 673, 683, 697, 719, 739, 749, 767, 779, 787, 799, 807, 817 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS A071330(a(n)) = 1. LINKS Reinhard Zumkeller, Table of n, a(n) for n = 1..10000 PROG (Haskell) a095841 n = a095841_list !! (n-1) a095841_list = filter ((== 1) . a071330) a000961_list (PARI) is(n)=sum(i=2, n\2, isprimepower(i)&&isprimepower(n-i))+isprimepower(n-1)==1 || n==2 \\ naive; Charles R Greathouse IV, Nov 21 2014 (PARI) is(n)=my(s); forprime(p=2, n\2, if(isprimepower(n-p) && s++>1, return(0))); for(e=2, log(n)\log(2), forprime(p=2, sqrtnint(n\2, e), if(isprimepower(n-p^e) && s++>1, return(0)))); s+(!!isprimepower(n-1))==1 || n==2 \\ faster; Charles R Greathouse IV, Nov 21 2014 CROSSREFS A095841 = Intersection of A208247 and A000961. Sequence in context: A215238 A127819 A152838 * A102697 A041813 A065842 Adjacent sequences:  A208244 A208245 A208246 * A208248 A208249 A208250 KEYWORD nonn AUTHOR Reinhard Zumkeller, Jan 11 2013 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 15 00:30 EST 2019. Contains 329988 sequences. (Running on oeis4.)