OFFSET
1,4
LINKS
T. D. Noe, Table of n, a(n) for n = 1..10000
EXAMPLE
10 = 1 + 3^2 = 2 + 2^3 = 3 + 7 = 5 + 5, therefore a(10) = 4;
11 = 2 + 3^2 = 3 + 2^3 = 4 + 7, therefore a(11) = 3;
12 = 1 + 11 = 3 + 3^2 = 2^2 + 2^3 = 5 + 7, therefore a(12) = 4;
a(149)=0, as for all x<149: if x is a prime power then 149-x is not.
MATHEMATICA
primePowerQ[n_] := Length[ FactorInteger[n]] == 1; a[n_] := (r = 0; Do[ If[ primePowerQ[k] && primePowerQ[n-k], r++], {k, 1, Floor[n/2]}]; r); Table[a[n], {n, 1, 95}](* Jean-François Alcover, Nov 17 2011, after Michael B. Porter *)
PROG
(PARI) ispp(n) = (omega(n)==1 || n==1)
A071330(n) = {local(r); r=0; for(i=1, floor(n/2), if(ispp(i) && ispp(n-i), r++)); r} \\ Michael B. Porter, Dec 04 2009
(PARI) a(n)=my(s); forprime(p=2, n\2, if(isprimepower(n-p), s++)); for(e=2, log(n)\log(2), forprime(p=2, sqrtnint(n\2, e), if(isprimepower(n-p^e), s++))); s+(!!isprimepower(n-1))+(n==2) \\ Charles R Greathouse IV, Nov 21 2014
(Haskell)
a071330 n = sum $
map (a010055 . (n -)) $ takeWhile (<= n `div` 2) a000961_list
-- Reinhard Zumkeller, Jan 11 2013
CROSSREFS
KEYWORD
nonn,nice
AUTHOR
Reinhard Zumkeller, May 19 2002
STATUS
approved