login
A071330
Number of decompositions of n into sum of two prime powers.
23
0, 1, 1, 2, 2, 3, 2, 3, 3, 4, 3, 4, 3, 4, 3, 4, 3, 5, 3, 5, 4, 4, 2, 5, 3, 5, 4, 5, 3, 6, 3, 7, 5, 7, 4, 7, 2, 6, 4, 6, 3, 6, 3, 6, 5, 6, 2, 8, 3, 8, 4, 6, 2, 9, 3, 7, 4, 6, 2, 8, 3, 7, 4, 7, 3, 9, 2, 8, 5, 7, 2, 10, 3, 8, 6, 7, 3, 9, 2, 9, 4, 7, 4, 11, 3, 9, 4, 7, 3, 12, 4, 8, 3, 7, 2
OFFSET
1,4
COMMENTS
a(2*n) > 0 (Goldbach's conjecture).
a(A071331(n)) = 0; A095840(n) = a(A000961(n)).
EXAMPLE
10 = 1 + 3^2 = 2 + 2^3 = 3 + 7 = 5 + 5, therefore a(10) = 4;
11 = 2 + 3^2 = 3 + 2^3 = 4 + 7, therefore a(11) = 3;
12 = 1 + 11 = 3 + 3^2 = 2^2 + 2^3 = 5 + 7, therefore a(12) = 4;
a(149)=0, as for all x<149: if x is a prime power then 149-x is not.
MATHEMATICA
primePowerQ[n_] := Length[ FactorInteger[n]] == 1; a[n_] := (r = 0; Do[ If[ primePowerQ[k] && primePowerQ[n-k], r++], {k, 1, Floor[n/2]}]; r); Table[a[n], {n, 1, 95}](* Jean-François Alcover, Nov 17 2011, after Michael B. Porter *)
PROG
(PARI) ispp(n) = (omega(n)==1 || n==1)
A071330(n) = {local(r); r=0; for(i=1, floor(n/2), if(ispp(i) && ispp(n-i), r++)); r} \\ Michael B. Porter, Dec 04 2009
(PARI) a(n)=my(s); forprime(p=2, n\2, if(isprimepower(n-p), s++)); for(e=2, log(n)\log(2), forprime(p=2, sqrtnint(n\2, e), if(isprimepower(n-p^e), s++))); s+(!!isprimepower(n-1))+(n==2) \\ Charles R Greathouse IV, Nov 21 2014
(Haskell)
a071330 n = sum $
map (a010055 . (n -)) $ takeWhile (<= n `div` 2) a000961_list
-- Reinhard Zumkeller, Jan 11 2013
CROSSREFS
KEYWORD
nonn,nice
AUTHOR
Reinhard Zumkeller, May 19 2002
STATUS
approved