|
|
A277329
|
|
a(0)=0, for n >= 1, a(2n) = a(n)+1, a(4n-1) = a(n)+1, a(4n+1) = a(n)+1.
|
|
4
|
|
|
0, 1, 2, 2, 3, 2, 3, 3, 4, 3, 3, 3, 4, 3, 4, 4, 5, 4, 4, 3, 4, 3, 4, 4, 5, 4, 4, 4, 5, 4, 5, 5, 6, 5, 5, 4, 5, 4, 4, 4, 5, 4, 4, 4, 5, 4, 5, 5, 6, 5, 5, 4, 5, 4, 5, 5, 6, 5, 5, 5, 6, 5, 6, 6, 7, 6, 6, 5, 6, 5, 5, 5, 6, 5, 5, 4, 5, 4, 5, 5, 6, 5, 5, 4, 5, 4, 5, 5, 6, 5, 5, 5, 6, 5, 6, 6, 7, 6, 6, 5, 6, 5, 5, 5, 6, 5, 5, 5, 6, 5, 6, 6, 7, 6, 6, 5, 6, 5, 6, 6, 7
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,3
|
|
COMMENTS
|
a(n) gives the index of the greatest prime dividing A260443(n).
Each n >= 1 occurs for the first time at 2^(n-1), which are also the positions of records.
For n >= 1, a(n) = number of terms in row n of A125184.
|
|
LINKS
|
|
|
FORMULA
|
a(0)=0, for n >= 1, a(2n) = a(n)+1, a(4n-1) = a(n)+1, a(4n+1) = a(n)+1.
Other identities. For all n >= 0:
a(2n+1) = max(a(n),a(n+1)).
|
|
PROG
|
(Scheme)
;; Standalone recurrence:
(definec (A277329 n) (cond ((zero? n) n) ((even? n) (+ 1 (A277329 (/ n 2)))) ((= 3 (modulo n 4)) (+ 1 (A277329 (/ (+ 1 n) 4)))) (else (+ 1 (A277329 (/ (+ -1 n) 4))))))
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|