

A277329


a(0)=0, for n >= 1, a(2n) = a(n)+1, a(4n1) = a(n)+1, a(4n+1) = a(n)+1.


4



0, 1, 2, 2, 3, 2, 3, 3, 4, 3, 3, 3, 4, 3, 4, 4, 5, 4, 4, 3, 4, 3, 4, 4, 5, 4, 4, 4, 5, 4, 5, 5, 6, 5, 5, 4, 5, 4, 4, 4, 5, 4, 4, 4, 5, 4, 5, 5, 6, 5, 5, 4, 5, 4, 5, 5, 6, 5, 5, 5, 6, 5, 6, 6, 7, 6, 6, 5, 6, 5, 5, 5, 6, 5, 5, 4, 5, 4, 5, 5, 6, 5, 5, 4, 5, 4, 5, 5, 6, 5, 5, 5, 6, 5, 6, 6, 7, 6, 6, 5, 6, 5, 5, 5, 6, 5, 5, 5, 6, 5, 6, 6, 7, 6, 6, 5, 6, 5, 6, 6, 7
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,3


COMMENTS

a(n) gives the index of the greatest prime dividing A260443(n).
Each n >= 1 occurs for the first time at 2^(n1), which are also the positions of records.
For n >= 1, a(n) = number of terms in row n of A125184.


LINKS

Table of n, a(n) for n=0..120.


FORMULA

a(0)=0, for n >= 1, a(2n) = a(n)+1, a(4n1) = a(n)+1, a(4n+1) = a(n)+1.
Other identities. For all n >= 0:
a(n) = A061395(A260443(n)).
a(2n+1) = max(a(n),a(n+1)).
For n >= 1, a(n) = 1+A057526(n).


PROG

(Scheme)
(define (A277329 n) (if (zero? n) n (+ 1 (A057526 n)))) ;; Code for A057526 given in that entry.
;; Standalone recurrence:
(definec (A277329 n) (cond ((zero? n) n) ((even? n) (+ 1 (A277329 (/ n 2)))) ((= 3 (modulo n 4)) (+ 1 (A277329 (/ (+ 1 n) 4)))) (else (+ 1 (A277329 (/ (+ 1 n) 4))))))


CROSSREFS

One more than A057526.
Cf. A061395, A125184, A260443.
Sequence in context: A129843 A330036 A050430 * A071330 A092333 A303297
Adjacent sequences: A277326 A277327 A277328 * A277330 A277331 A277332


KEYWORD

nonn


AUTHOR

Antti Karttunen, Oct 27 2016


STATUS

approved



