
1, 2, 3, 5, 9, 7, 25, 15, 11, 49, 35, 21, 75, 13, 121, 77, 55, 245, 33, 147, 105, 17, 169, 143, 91, 847, 65, 605, 385, 39, 363, 231, 165, 735, 19, 289, 221, 187, 1859, 119, 1183, 1001, 85, 845, 715, 455, 4235, 51, 507, 429, 273, 2541, 195, 1815, 1155, 23, 361, 323, 247, 3757, 209, 3179, 2431, 133, 2023, 1547, 1309, 13013, 95
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,2


COMMENTS

After the initial terms 1, 2 and 3, all other terms can be inductively generated by applying any finite compositioncombination of A253560 and A253550 to 3, but with such a restriction that A253560 may not be applied twice in succession.
A permutation of A277334.
Note how A253565(A022340(n)) = A253565(2*A003714(n)) yields a permutation of A056911, odd squarefree numbers.


LINKS

Antti Karttunen, Table of n, a(n) for n = 0..10946


FORMULA

a(n) = A253565(A003714(n)).


EXAMPLE

55 = A253550(A253550(A253560(A253550(3)))), 55 is in this sequence.


PROG

(Scheme) (define (A277332 n) (A253565 (A003714 n)))


CROSSREFS

Cf. A003714, A022340, A253550, A253560, A253565.
Cf. A277334 (same sequence sorted into ascending order).
Cf. also A056911, A277006, A277331.
Sequence in context: A045965 A323390 A324886 * A100674 A058314 A072735
Adjacent sequences: A277329 A277330 A277331 * A277333 A277334 A277335


KEYWORD

nonn


AUTHOR

Antti Karttunen, Oct 12 2016


STATUS

approved

