login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A056911
Odd squarefree numbers.
77
1, 3, 5, 7, 11, 13, 15, 17, 19, 21, 23, 29, 31, 33, 35, 37, 39, 41, 43, 47, 51, 53, 55, 57, 59, 61, 65, 67, 69, 71, 73, 77, 79, 83, 85, 87, 89, 91, 93, 95, 97, 101, 103, 105, 107, 109, 111, 113, 115, 119, 123, 127, 129, 131, 133, 137, 139, 141, 143, 145, 149, 151
OFFSET
1,2
COMMENTS
From Daniel Forgues, May 27 2009: (Start)
For any prime p, there are as many squarefree numbers having p as a factor as squarefree numbers not having p as a factor amongst all the squarefree numbers (one-to-one correspondence, both cardinality aleph_0).
E.g. there are as many even squarefree numbers as there are odd squarefree numbers.
For any prime p, the density of squarefree numbers having p as a factor is 1/p of the density of squarefree numbers not having p as a factor.
E.g. the density of even squarefree numbers is 1/p = 1/2 of the density of odd squarefree numbers (which means that 1/(p + 1) = 1/3 of the squarefree numbers are even and p/(p + 1) = 2/3 are odd) and as a consequence the n-th even squarefree number is very nearly p = 2 times the n-th odd squarefree number (which means that the n-th even squarefree number is very nearly (p + 1) = 3 times the n-th squarefree number while the n-th odd squarefree number is very nearly (p + 1)/p = 3/2 the n-th squarefree number.
For any prime p, the n-th squarefree number not divisible by p is: n * (1 + 1/p) * zeta(2) + O(n^(1/2)) = n * (1 + 1/p) * (Pi^2 / 6) + O(n^(1/2)) (End)
LINKS
G. J. O. Jameson, Even and odd square-free numbers, Math. Gazette 94 (2010), 123-127; Author's copy.
FORMULA
A123314(A100112(a(n))) > 0. - Reinhard Zumkeller, Sep 25 2006
a(n) = n * (3/2) * zeta(2) + O(n^(1/2)) = n * (Pi^2 / 4) + O(n^(1/2)). - Daniel Forgues, May 27 2009
A008474(a(n)) * A000035(a(n)) = 1. - Reinhard Zumkeller, Aug 27 2011
Sum_{n>=1} 1/a(n)^s = ((2^s)* zeta(s))/((1+2^s)*zeta(2*s)). - Enrique Pérez Herrero, Sep 15 2012 [corrected by Amiram Eldar, Sep 26 2023]
EXAMPLE
The exponents in the prime factorization of 15 are all equal to 1, so 15 appears here. The number 75 does not appear in this sequence, as it is divisible by the square number 25.
MATHEMATICA
Select[Range[1, 151, 2], SquareFreeQ] (* Ant King, Mar 17 2013 *)
PROG
(Magma) [n: n in [1..151 by 2] | IsSquarefree(n)]; // Bruno Berselli, Mar 03 2011
(Haskell)
a056911 n = a056911_list !! (n-1)
a056911_list = filter ((== 1) . a008966) [1, 3..]
-- Reinhard Zumkeller, Aug 27 2011
(PARI) is(n)=n%2 && issquarefree(n) \\ Charles R Greathouse IV, Mar 26 2013
(PARI) list(lim)=my(v=List()); forsquarefree(k=1, lim\1, if(k[1]%2, listput(v, k[1]))); Vec(v) \\ Charles R Greathouse IV, Jan 14 2025
CROSSREFS
Subsequence of A005117 and A036537.
Cf. A238711 (subsequence).
Sequence in context: A334420 A342144 A357014 * A152955 A235866 A334141
KEYWORD
easy,nonn,changed
AUTHOR
James A. Sellers, Jul 07 2000
STATUS
approved