login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A235866
G-cyclic numbers: numbers n such that gcd(n,A060968(n))=1.
4
1, 3, 5, 7, 11, 13, 15, 17, 19, 21, 23, 29, 31, 35, 37, 41, 43, 47, 51, 53, 55, 57, 59, 61, 65, 67, 71, 73, 77, 79, 83, 85, 87, 89, 91, 93, 97, 101, 103, 105, 107, 109, 113, 115, 119, 123, 127, 129, 131, 133, 137, 139, 143, 145, 149, 151, 155, 157, 159, 161
OFFSET
1,2
COMMENTS
From Robert Israel, May 01 2020: (Start)
All terms are odd and squarefree.
Contains all odd primes.
If n is a member, then so are all divisors of n.
(End)
LINKS
Jose María Grau, A. M. Oller-Marcen, Manuel Rodriguez and D. Sadornil, Fermat test with Gaussian base and Gaussian pseudoprimes, arXiv:1401.4708 [math.NT], 2014.
MAPLE
g:= proc(p, e) if p=2 or e > 1 then 0
elif p mod 4 = 1 then p-1 else p+1 fi
end proc:
h:= proc(n) mul(g(t[1], t[2]), t=ifactors(n)[2]) end proc:
select(n -> igcd(n, h(n))=1, [seq(i, i=1..2000, 2)]); # Robert Israel, May 01 2020
MATHEMATICA
fa=FactorInteger; phi[1]=1; phi[p_, s_] := Which[Mod[p, 4] == 1, p^(s-1)*(p-1), Mod[p, 4]==3, p^(s-1)*(p+1), s==1, 2, True, 2^(s+1)]; phi[1]=1; phi[n_] := Product[phi[fa[n][[i, 1]], fa[n][[i, 2]]], {i, Length[fa[n]]}]; Select[Range[1000], GCD[phi[#], #] == 1 &]
PROG
(PARI) genit(maxx)={arr=List(); for(ptr=1, maxx, if(gcd(ptr, A060968(ptr))==1, listput(arr, ptr))); arr}
\\******** following code taken from A060968
A060968(n)={my(f=factor(n)[, 1]); q=n*prod(i=if(n%2, 1, 2), #f, if(f[i]%4==1, 1-1/f[i], 1+1/f[i]))*if(n%4, 1, 2); return(q); } \\ Bill McEachen, Jul 16 2021
CROSSREFS
Sequence in context: A357014 A056911 A152955 * A334141 A325570 A210719
KEYWORD
nonn
AUTHOR
STATUS
approved