login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

G-cyclic numbers: numbers n such that gcd(n,A060968(n))=1.
4

%I #23 Aug 21 2021 16:34:50

%S 1,3,5,7,11,13,15,17,19,21,23,29,31,35,37,41,43,47,51,53,55,57,59,61,

%T 65,67,71,73,77,79,83,85,87,89,91,93,97,101,103,105,107,109,113,115,

%U 119,123,127,129,131,133,137,139,143,145,149,151,155,157,159,161

%N G-cyclic numbers: numbers n such that gcd(n,A060968(n))=1.

%C From _Robert Israel_, May 01 2020: (Start)

%C All terms are odd and squarefree.

%C Contains all odd primes.

%C If n is a member, then so are all divisors of n.

%C (End)

%H Robert Israel, <a href="/A235866/b235866.txt">Table of n, a(n) for n = 1..10000</a>

%H Jose María Grau, A. M. Oller-Marcen, Manuel Rodriguez and D. Sadornil, <a href="http://arxiv.org/abs/1401.4708">Fermat test with Gaussian base and Gaussian pseudoprimes</a>, arXiv:1401.4708 [math.NT], 2014.

%p g:= proc(p,e) if p=2 or e > 1 then 0

%p elif p mod 4 = 1 then p-1 else p+1 fi

%p end proc:

%p h:= proc(n) mul(g(t[1],t[2]),t=ifactors(n)[2]) end proc:

%p select(n -> igcd(n,h(n))=1, [seq(i,i=1..2000,2)]); # _Robert Israel_, May 01 2020

%t fa=FactorInteger; phi[1]=1;phi[p_, s_] := Which[Mod[p, 4] == 1, p^(s-1)*(p-1), Mod[p, 4]==3, p^(s-1)*(p+1), s==1, 2, True, 2^(s+1)]; phi[1]=1; phi[n_] := Product[phi[fa[n][[i, 1]], fa[n][[i, 2]]], {i, Length[fa[n]]}]; Select[Range[1000], GCD[phi[#], #] == 1 &]

%o (PARI) genit(maxx)={arr=List(); for(ptr=1, maxx, if(gcd(ptr,A060968(ptr))==1, listput(arr,ptr))); arr}

%o \\******** following code taken from A060968

%o A060968(n)={my(f=factor(n)[,1]); q=n*prod(i=if(n%2,1,2),#f,if(f[i]%4==1,1-1/f[i],1+1/f[i]))*if(n%4,1,2);return(q);} \\ _Bill McEachen_, Jul 16 2021

%Y Cf. A060968, A003277.

%K nonn

%O 1,2

%A _José María Grau Ribas_, Jan 19 2014