login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A235863
Exponent of the multiplicative group G_n:={x+iy: x^2+y^2==1 (mod n); 0 <= x,y < n} where i=sqrt(-1).
7
1, 2, 4, 4, 4, 4, 8, 4, 12, 4, 12, 4, 12, 8, 4, 4, 16, 12, 20, 4, 8, 12, 24, 4, 20, 12, 36, 8, 28, 4, 32, 8, 12, 16, 8, 12, 36, 20, 12, 4, 40, 8, 44, 12, 12, 24, 48, 4, 56, 20, 16, 12, 52, 36, 12, 8, 20, 28, 60, 4, 60, 32, 24, 16, 12, 12, 68, 16, 24, 8, 72
OFFSET
1,2
COMMENTS
From Jianing Song, Nov 05 2019: (Start)
Exponent of the group G is the least e > 0 such that x^e = 1 for every x in G, where 1 is the identity element.
Also the exponent of O(2,Z_n) or SO(2,Z_n). O(2,Z_n) is the group of 2 X 2 matrices A over Z_n such that A*A^T = E = [1,0;0,1]; SO(2,Z_n) is the group of 2 X 2 matrices A over Z_n such that A*A^T = E = [1,0;0,1] and det(A) = 1. Note that G_n is isomorphic to SO(2,Z_n) by the mapping x+yi <-> [x,y;-y,x]. See A060698 for the group structure of SO(2,Z_n) and A182039 for the group structure of O(2,Z_n). (End)
LINKS
José María Grau, A. M. Oller-Marcén, Manuel Rodriguez and Daniel Sadornil, Fermat test with Gaussian base and Gaussian pseudoprimes, arXiv:1401.4708 [math.NT], 2014.
José María Grau, A. M. Oller-Marcén, Manuel Rodriguez and Daniel Sadornil, Fermat test with Gaussian base and Gaussian pseudoprimes, Czechoslovak Mathematical Journal 65(140), (2015) pp. 969-982.
FORMULA
a(2) = 2, a(4) = a(8) = a(16) = 4, a(2^e) = 2^(e-2) for e >= 5; a(p^e) = (p-1)*p^(e-1) if p == 1 (mod 4) and (p+1)*p^(e-1) if p == 1 (mod 4). - Jianing Song, Nov 05 2019
If gcd(n,m)=1 then a(nm) = lcm(a(n), a(m)).
MATHEMATICA
fa=FactorInteger; lam[1]=1; lam[p_, s_] := Which[Mod[p, 4] == 3, p ^ (s - 1 ) (p + 1) , Mod[p, 4] == 1, p ^ (s - 1 ) (p - 1) , s ≥ 5, 2 ^ (s - 2 ), s > 1, 4, s == 1, 2]; lam[n_] := {aux = 1; Do[aux = LCM[aux, lam[fa[n][[i, 1]], fa[n][[i, 2]]]], {i, 1, Length[fa[n]]}]; aux}[[1]] ; Array[lam, 100]
PROG
(PARI) a(n)={my(f=factor(n)); lcm(vector(#f~, i, my([p, e]=f[i, ]); if(p==2, 2^max(e-2, min(e, 2)), p^(e-1)*if(p%4==1, p-1, p+1))))} \\ Andrew Howroyd, Aug 06 2018
CROSSREFS
(Z/nZ)* ------ G_n
Order: A000010 ------ A060968.
Exponent: A002322 ------ this sequence.
n-1 ------ A201629.
Carmichael/G-Carmichael numbers: A002997 ------ A235865.
Lehmer /G-Lehmer numbers: unknown ------ A235864.
Cyclic/G-cyclic numbers: A003277 ------ A235866.
n such that the group is cyclic: A033948 ------ A235868.
Sequence in context: A220523 A220527 A183226 * A220495 A194441 A220521
KEYWORD
nonn
AUTHOR
STATUS
approved