login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A183226
Sum of digits of (2^n) in base 5, also sum of digits of (10^n) in base 5.
3
1, 2, 4, 4, 4, 4, 8, 4, 4, 8, 12, 12, 12, 12, 8, 12, 16, 20, 20, 20, 16, 12, 20, 24, 28, 20, 32, 32, 24, 32, 40, 40, 32, 24, 28, 32, 32, 40, 28, 36, 36, 40, 44, 40, 36, 40, 36, 44, 44, 44, 44, 48, 52, 52, 48, 56, 40, 56, 68, 60, 52, 52, 48, 60, 56, 64, 60, 48, 56, 60, 60, 64, 60, 60, 60, 64, 52, 48, 64, 68, 56, 80, 80
OFFSET
0,2
COMMENTS
If i >= 2, a(n) mod 4 = 0. (Cf. A053824)
LINKS
EXAMPLE
a(9) = 8 because 10^9 = 4022000000000_5, and 2^9 = 512 = 4022_5.
MAPLE
a:= n-> add(i, i=convert (2^n, base, 5)):
seq(a(n), n=0..82); # Alois P. Heinz, Jan 06 2011
MATHEMATICA
Table[Plus@@IntegerDigits[2^n, 5], {n, 0, 49}] (* Either that one or this one *) Table[Plus@@IntegerDigits[10^n, 5], {n, 0, 49}] (* Alonso del Arte, Jan 06 2011 *)
PROG
(PARI)\\ L is the list of the N digits of 2^n in quinary.
\\ L[1] = a_0 , ..., L[N] = a_(N-1).
convert(n)={n=2^n; x=n; N=floor(log(n)/log(5))+1;
L = listcreate(N);
while(x, n=floor(n/5); r=x-5*n; listput(L, r); x=n; );
L; N};
for(n=0, 100, convert(n); an=0; for(i=1, N, an+=L[i]; ); print1(an, ", "));
(PARI) t(n) = if(n<1, 0, if(n%5, t(n-1)+1, t(n/5)));
vector(200, n, n--; t(2^n)) \\ Altug Alkan, Oct 28 2015
CROSSREFS
KEYWORD
nonn,easy,base
AUTHOR
Washington Bomfim, Jan 01 2011
STATUS
approved