Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #18 Oct 29 2015 15:23:46
%S 1,2,4,4,4,4,8,4,4,8,12,12,12,12,8,12,16,20,20,20,16,12,20,24,28,20,
%T 32,32,24,32,40,40,32,24,28,32,32,40,28,36,36,40,44,40,36,40,36,44,44,
%U 44,44,48,52,52,48,56,40,56,68,60,52,52,48,60,56,64,60,48,56,60,60,64,60,60,60,64,52,48,64,68,56,80,80
%N Sum of digits of (2^n) in base 5, also sum of digits of (10^n) in base 5.
%C If i >= 2, a(n) mod 4 = 0. (Cf. A053824)
%H Robert Israel, <a href="/A183226/b183226.txt">Table of n, a(n) for n = 0..10000</a>
%e a(9) = 8 because 10^9 = 4022000000000_5, and 2^9 = 512 = 4022_5.
%p a:= n-> add(i, i=convert (2^n, base, 5)):
%p seq(a(n), n=0..82); # _Alois P. Heinz_, Jan 06 2011
%t Table[Plus@@IntegerDigits[2^n, 5], {n, 0, 49}] (* Either that one or this one *) Table[Plus@@IntegerDigits[10^n, 5], {n, 0, 49}] (* _Alonso del Arte_, Jan 06 2011 *)
%o (PARI)\\ L is the list of the N digits of 2^n in quinary.
%o \\ L[1] = a_0 , ..., L[N] = a_(N-1).
%o convert(n)={n=2^n; x=n; N=floor(log(n)/log(5))+1;
%o L = listcreate(N);
%o while(x, n=floor(n/5); r=x-5*n; listput(L, r); x=n; );
%o L; N};
%o for(n=0,100,convert(n);an=0;for(i=1,N,an+=L[i];); print1(an,", "));
%o (PARI) t(n) = if(n<1, 0, if(n%5, t(n-1)+1, t(n/5)));
%o vector(200, n, n--; t(2^n)) \\ _Altug Alkan_, Oct 28 2015
%Y Cf. A055476, A173670, A183227, A183228.
%K nonn,easy,base
%O 0,2
%A _Washington Bomfim_, Jan 01 2011