login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A183227
a(n) is the base-5 digit sum of 10^n-1.
3
0, 5, 11, 15, 19, 23, 31, 31, 35, 43, 51, 55, 59, 63, 63, 71, 79, 87, 91, 95, 95, 95, 107, 115, 123, 119, 135, 139, 135, 147, 159, 163, 159, 155, 163, 171, 175, 187, 179, 191, 195, 203, 211, 211, 211, 219, 219, 231, 235, 239
OFFSET
0,2
FORMULA
a(n) = A053824(10^n-1) = 4*n + A053824(2^n-1).
EXAMPLE
a(9) = 43 because 10^9 - 1 is written as 4021444444444_5, and 2^9 - 1 = 511 is written as 4021_5.
MAPLE
A053824 := proc(n) add(d, d=convert(n, base, 5)) ; end proc:
A183227 := proc(n) A053824(10^n-1) ; end proc: # R. J. Mathar, Jan 09 2011
PROG
(PARI)\\L is a list of the N digits of 2^n - 1 in quinary
convert(n)={n = 2^n - 1; x=n; N=floor(log(n)/log(5))+1;
L = listcreate(N);
while(x, n=floor(n/5); r=x-5*n; listput(L, r); x=n; );
L; N};
print1("0, "); for(n = 1, 100, convert(n); s = 0; for(i = 1, N, s += L[i]; ); print1(s+4*n, ", "));
CROSSREFS
Sequence in context: A217585 A314006 A314007 * A314008 A314009 A314010
KEYWORD
nonn,easy,base
AUTHOR
Washington Bomfim, Jan 01 2011
STATUS
approved