login
A183230
G.f.: Sum_{n>=0} a(n)*x^n/n!^3 = Product_{n>=1} (1 + x^n/n!^3).
2
1, 1, 1, 28, 65, 1126, 219592, 1210105, 26891713, 2147043538, 2019029825126, 21746314187335, 770200602942872, 54021095931416459, 16833586753169817373, 54446959965626243089903, 1039787297277083116535233
OFFSET
0,4
EXAMPLE
G.f.: A(x) = 1 + x + x^2/2!^3 + 28*x^3/3!^3 + 65*x^4/4!^3 +...
A(x) = (1 + x)*(1 + x^2/2!^3)*(1 + x^3/3!^3)*(1 + x^4/4!^3)*...
PROG
(PARI) {a(n)=n!^3*polcoeff(prod(k=1, n, 1+x^k/k!^3 +x*O(x^n)), n)}
CROSSREFS
Sequence in context: A044511 A290543 A344044 * A246911 A323918 A039460
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jan 04 2011
STATUS
approved