

A183233


Ordering of the numbers in the tree A183231; complement of A183234.


2



1, 3, 4, 6, 7, 10, 11, 13, 15, 16, 18, 19, 21, 22, 24, 25, 28, 29, 31, 32, 34, 36, 37, 39, 40, 42, 43, 45, 46, 48, 49, 51, 52, 55, 56, 58, 59, 61, 62, 66, 67, 69, 70, 72, 73, 76, 78, 79, 81, 82, 84, 85, 88, 89, 91, 92, 94, 95, 97, 98, 101, 102, 105, 106, 108, 109, 111, 112, 115, 116, 118, 120, 121, 123, 124, 126, 127, 130, 131, 133, 136, 137, 139, 140, 142, 143, 146, 147, 149, 151, 153, 154, 156, 157, 159, 160, 163, 164, 166, 168, 169, 171, 172, 174, 175, 177, 178, 181, 182, 184, 186
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


LINKS

Table of n, a(n) for n=1..111.


FORMULA

The monotonic ordering of the numbers in the set S generated by these rules: 1 is in S, and if n is in S, then (n^2+5n+2)/2 and n+Floor(1/2+sqrt(2n+4)) are in S.


MATHEMATICA

nn=200; t={1}; t0=t; While[t=Select[Union[t, (1/2)*(t^2+5t+2), t+Floor[1/2+(2t+4)^(1/2)]], #<=nn &]; t0 !=t, t0=t]; t
f[s_List] := Select[ Union@ Join[s, (s^2 + 5 s + 2)/2, s + Floor[1/2 + Sqrt@ (2 s + 4)]], # < 201 &]; NestWhile[f, {1}, UnsameQ, All]


CROSSREFS

Cf. A183231, A183232, A183234.
Sequence in context: A060832 A341292 A047297 * A191926 A065135 A229792
Adjacent sequences: A183230 A183231 A183232 * A183234 A183235 A183236


KEYWORD

nonn


AUTHOR

Clark Kimberling, Jan 02 2011


STATUS

approved



