login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A183236
Sums of multinomial coefficients to the 4th power.
7
1, 1, 17, 1378, 354065, 221300626, 286871431922, 688780254549829, 2821284379712638737, 18510450092641988146882, 185104666826030540618018642, 2710117456989714966261367339909, 56196998736058707145628074314226034
OFFSET
0,3
COMMENTS
Equals sums of the 4th power of terms in rows of the triangle of multinomial coefficients (A036038).
LINKS
FORMULA
G.f.: Sum_{n>=0} a(n)*x^n/n!^4 = Product_{n>=1} 1/(1 - x^n/n!^4).
a(n) ~ c * (n!)^4, where c = Product_{k>=2} 1/(1-1/(k!)^4) = 1.067493570155257423039762074691753715853526744464586468822554194836450214299287... . - Vaclav Kotesovec, Feb 19 2015
EXAMPLE
G.f.: A(x) = 1 + x + 17*x^2/2!^4 + 1378*x^3/3!^4 + 354065*x^4/4!^4 +...
A(x) = 1/((1-x)*(1-x^2/2!^4)*(1-x^3/3!^4)*(1-x^4/4!^4)*...).
PROG
(PARI) {a(n)=n!^4*polcoeff(1/prod(k=1, n, 1-x^k/k!^4 +x*O(x^n)), n)}
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jan 04 2011
STATUS
approved