login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A183240
Sums of the squares of multinomial coefficients.
10
1, 1, 5, 46, 773, 19426, 708062, 34740805, 2230260741, 180713279386, 18085215373130, 2188499311357525, 315204533416762046, 53270712928769375885, 10441561861586014363349, 2349364090881443819316871, 601444438364480313663234821, 173817677082622796179263021770
OFFSET
0,3
COMMENTS
Equals sums of the squares of terms in rows of the triangle of multinomial coefficients (A036038).
Ignoring initial term, equals the logarithmic derivative of A183241; A183241 is conjectured to consist entirely of integers.
More generally, let {M(n,k), n>=0} be the sums of the k-th powers of the multinomial coefficients where k>=0 (see table A183610), then:
Sum_{n>=0} M(n,k)*x^n/n!^k = Product_{n>=1} 1/(1-x^n/n!^k).
LINKS
FORMULA
G.f.: Sum_{n>=0} a(n)*x^n/n!^2 = Product_{n>=1} 1/(1-x^n/n!^2).
a(n) ~ c * (n!)^2, where c = Product_{k>=2} 1/(1-1/(k!)^2) = 1.37391178018464563291052028168404977854977270679629932106310942272080844... . - Vaclav Kotesovec, Feb 19 2015
EXAMPLE
G.f.: A(x) = 1 + x + 5*x^2/2!^2 + 46*x^3/3!^2 + 773*x^4/4!^2 +...
A(x) = 1/((1-x)*(1-x^2/2!^2)*(1-x^3/3!^2)*(1-x^4/4!^2)*...).
...
After the initial term a(0)=1, the next several terms are
a(1) = 1^2 = 1,
a(2) = 1^2 + 2^2 = 5,
a(3) = 1^2 + 3^2 + 6^2 = 46,
a(4) = 1^2 + 4^2 + 6^2 + 12^2 + 24^2 = 773,
a(5) = 1^2 + 5^2 + 10^2 + 20^2 + 30^2 + 60^2 + 120^2 = 19426,
and continue with the sums of squares of the terms in triangle A036038.
MAPLE
b:= proc(n, i) option remember; `if`(n=0 or i=1, 1,
b(n-i, min(n-i, i))/i!^2+b(n, i-1))
end:
a:= n-> n!^2*b(n$2):
seq(a(n), n=0..21); # Alois P. Heinz, Sep 11 2019
MATHEMATICA
t=Table[Apply[Multinomial, Reverse[Sort[IntegerPartitions[i], Length[#1] > Length[#2] &]], {1}], {i, 30}]^2; Plus@@@t (* From Tony D. Noe *)
b[n_, i_] := b[n, i] = If[n == 0 || i == 1, 1,
b[n - i, Min[n - i, i]]/i!^2 + b[n, i - 1]];
a[n_] := n!^2 b[n, n];
a /@ Range[0, 21] (* Jean-François Alcover, Jun 04 2021, after Alois P. Heinz *)
PROG
(PARI) {a(n)=n!^2*polcoeff(1/prod(k=1, n, 1-x^k/k!^2 +x*O(x^n)), n)}
CROSSREFS
Cf. A183610 (table of sums of powers of multinomial coefficients).
Sequence in context: A295552 A066998 A036246 * A299715 A377005 A000872
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jan 03 2011
EXTENSIONS
Terms following a(7) computed by T. D. Noe.
STATUS
approved