OFFSET
0,3
COMMENTS
Equals sums of the 5th power of terms in rows of the triangle of multinomial coefficients (A036038).
LINKS
Vaclav Kotesovec, Table of n, a(n) for n = 0..120
FORMULA
G.f.: Sum_{n>=0} a(n)*x^n/n!^5 = Product_{n>=1} 1/(1 - x^n/n!^5).
a(n) ~ c * (n!)^5, where c = Product_{k>=2} 1/(1-1/(k!)^5) = 1.03239096052278897179685563337623849923796538921602982416328969955606263213989... . - Vaclav Kotesovec, Feb 19 2015
EXAMPLE
G.f.: A(x) = 1 + x + 33*x^2/2!^5 + 8020*x^3/3!^5 + 8220257*x^4/4!^5 +...
A(x) = 1/((1-x)*(1-x^2/2!^5)*(1-x^3/3!^5)*(1-x^4/4!^5)*...).
PROG
(PARI) {a(n)=n!^5*polcoeff(1/prod(k=1, n, 1-x^k/k!^5 +x*O(x^n)), n)}
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jan 04 2011
STATUS
approved