The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A183230 G.f.: Sum_{n>=0} a(n)*x^n/n!^3 = Product_{n>=1} (1 + x^n/n!^3). 2

%I #6 Apr 23 2022 16:22:22

%S 1,1,1,28,65,1126,219592,1210105,26891713,2147043538,2019029825126,

%T 21746314187335,770200602942872,54021095931416459,

%U 16833586753169817373,54446959965626243089903,1039787297277083116535233

%N G.f.: Sum_{n>=0} a(n)*x^n/n!^3 = Product_{n>=1} (1 + x^n/n!^3).

%e G.f.: A(x) = 1 + x + x^2/2!^3 + 28*x^3/3!^3 + 65*x^4/4!^3 +...

%e A(x) = (1 + x)*(1 + x^2/2!^3)*(1 + x^3/3!^3)*(1 + x^4/4!^3)*...

%o (PARI) {a(n)=n!^3*polcoeff(prod(k=1, n, 1+x^k/k!^3 +x*O(x^n)), n)}

%Y Cf. A183229, A007837.

%K nonn

%O 0,4

%A _Paul D. Hanna_, Jan 04 2011

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 9 01:24 EDT 2024. Contains 375024 sequences. (Running on oeis4.)