login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A056909
Primes of the form k^2+6.
7
7, 31, 127, 367, 631, 967, 1231, 3727, 4231, 6247, 7927, 8287, 11887, 17167, 21031, 22807, 30631, 34231, 39607, 48847, 72367, 108247, 109567, 126031, 160807, 185767, 198031, 231367, 235231, 261127, 265231, 279847, 290527, 323767, 354031
OFFSET
1,1
COMMENTS
a(n) mod 120 = 7 or 31 for all n.
LINKS
FORMULA
a(n) = 36*A056910(n)^2 + 12*A056910(n) + 7.
a(n) >> n^2 log n. - Charles R Greathouse IV, Nov 06 2024
EXAMPLE
a(2)=127 since 11^2+6=127 which is prime.
MATHEMATICA
Intersection[Table[n^2+6, {n, 0, 10^2}], Prime[Range[9*10^3]]] ...or... For[i=6, i<=6, a={}; Do[If[PrimeQ[n^2+i], AppendTo[a, n^2+i]], {n, 0, 100}]; Print["n^2+", i, ", ", a]; i++ ] - Vladimir Joseph Stephan Orlovsky, Apr 29 2008
Select[Table[n^2+6, {n, 0, 7000}], PrimeQ] (* Vincenzo Librandi, Nov 30 2011 *)
PROG
(Magma) [a: n in [0..700] | IsPrime(a) where a is n^2+6]; // Vincenzo Librandi, Nov 30 2011
(PARI) list(lim)=my(v=List(), t); forstep(k=1, sqrtint(lim\1-6), 2, if(isprime(t=k^2+6), listput(v, t))); Vec(v) \\ Charles R Greathouse IV, Nov 06 2024
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Henry Bottomley, Jul 07 2000
STATUS
approved