login
A056909
Primes of the form k^2+6.
7
7, 31, 127, 367, 631, 967, 1231, 3727, 4231, 6247, 7927, 8287, 11887, 17167, 21031, 22807, 30631, 34231, 39607, 48847, 72367, 108247, 109567, 126031, 160807, 185767, 198031, 231367, 235231, 261127, 265231, 279847, 290527, 323767, 354031
OFFSET
1,1
COMMENTS
a(n) mod 120 = 7 or 31 for all n.
LINKS
FORMULA
a(n) = 36*A056910(n)^2 + 12*A056910(n) + 7.
a(n) >> n^2 log n. - Charles R Greathouse IV, Nov 06 2024
EXAMPLE
a(2)=127 since 11^2+6=127 which is prime.
MATHEMATICA
Intersection[Table[n^2+6, {n, 0, 10^2}], Prime[Range[9*10^3]]] ...or... For[i=6, i<=6, a={}; Do[If[PrimeQ[n^2+i], AppendTo[a, n^2+i]], {n, 0, 100}]; Print["n^2+", i, ", ", a]; i++ ] - Vladimir Joseph Stephan Orlovsky, Apr 29 2008
Select[Table[n^2+6, {n, 0, 7000}], PrimeQ] (* Vincenzo Librandi, Nov 30 2011 *)
PROG
(Magma) [a: n in [0..700] | IsPrime(a) where a is n^2+6]; // Vincenzo Librandi, Nov 30 2011
(PARI) list(lim)=my(v=List(), t); forstep(k=1, sqrtint(lim\1-6), 2, if(isprime(t=k^2+6), listput(v, t))); Vec(v) \\ Charles R Greathouse IV, Nov 06 2024
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Henry Bottomley, Jul 07 2000
STATUS
approved