login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A327497
a(n) = Numerator([x^n] (4*sinh(sqrt(x)/2)^2*cosh(sqrt(x)))/x).
6
1, 7, 31, 127, 73, 2047, 8191, 4681, 131071, 524287, 42799, 8388607, 33554431, 19173961, 536870911, 2147483647, 53353631, 1108378657, 137438953471, 78536544841, 2199023255551, 8796093022207, 162139963543, 140737488355327, 562949953421311, 321685687669321
OFFSET
0,2
FORMULA
a(n) = numerator([x^n] (cosh(2*sqrt(x)) - 2*cosh(sqrt(x)) + 1)/x).
a(n) = numerator (1/8)*cos(Pi*n)*Zeta(2*n+2)*Pi^(-2*n-2)/(-1+2^(2*n+2))*(-2+4^(-n))/Zeta(-1-2*n). - Peter Luschny, Jun 13 2020
a(n) = denominator((2*n + 1)!/(2^(2*n + 1) - 1)). - Peter Luschny, Jul 18 2021
EXAMPLE
r(n) = 1, 7/12, 31/360, 127/20160, 73/259200, 2047/239500800, 8191/43589145600, ...
MAPLE
gf := (4*sinh(sqrt(x)/2)^2*cosh(sqrt(x)))/x: ser := series(gf, x, 40):
seq(numer(coeff(ser, x, n)), n=0..25);
# Alternative:
a := s -> (2*s + 1)!/(2^(2*s + 1) - 1):
seq(denom(a(n)), n = 0..25); # Peter Luschny, Jul 18 2021
MATHEMATICA
a[s_] := ((1 - 2^(-1 - 2 s)) Pi^(-2 - 2 s) Cos[Pi s] Zeta[2 + 2 s])/(4 (1 - 2^(2 + 2 s)) Zeta[-1 - 2 s]);
Array[a, 26, 0] // Numerator (* Peter Luschny, Jun 13 2020 *)
CROSSREFS
Denominators in A327986.
Sequence in context: A125193 A002184 A002588 * A036280 A153005 A056909
KEYWORD
nonn,frac
AUTHOR
Peter Luschny, Oct 05 2019
STATUS
approved