

A056908


Numbers k such that 36*k^2 + 36*k + 13 is prime.


3



0, 2, 4, 5, 7, 9, 14, 19, 22, 24, 29, 30, 34, 40, 42, 44, 50, 59, 62, 70, 72, 74, 75, 79, 80, 82, 84, 95, 102, 110, 119, 125, 132, 135, 139, 149, 150, 157, 160, 165, 172, 180, 197, 199, 200, 209, 210, 212, 224, 225, 227, 229, 230, 232, 235, 240, 244, 249
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


COMMENTS

36*k^2 + 36*k + 13 = (6*k+3)^2 + 4, which is 4 more than a square.


LINKS

Vincenzo Librandi, Table of n, a(n) for n = 1..1000


EXAMPLE

a(2)=4 since 36*4^2 + 36*4 + 13 = 733, which is prime (as well as being four more than a square).


MATHEMATICA

Select[Range[0, 700], PrimeQ[36#^2+36#+13]&] (* Vincenzo Librandi, Jul 14 2012


PROG

(MAGMA) [n: n in [0..70] IsPrime(36*n^2+36*n+13)]; // Vincenzo Librandi, Jul 14 2012
(PARI) is(n)=isprime(36*n^2+36*n+13) \\ Charles R Greathouse IV, Mar 01 2017


CROSSREFS

This sequence and formula, together with A056907 and its formula, generate all primes of the form k^2+4, i.e., A005473.
Cf. A056900, A056902, A056904, A056906.
Sequence in context: A193494 A161832 A078404 * A296344 A060565 A231014
Adjacent sequences: A056905 A056906 A056907 * A056909 A056910 A056911


KEYWORD

nonn,easy


AUTHOR

Henry Bottomley, Jul 07 2000


STATUS

approved



