login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A078404
Expansion of Molien series for a certain 4-D group of order 192.
2
1, 1, 1, 2, 4, 5, 7, 9, 14, 17, 22, 27, 36, 43, 52, 61, 75, 87, 102, 116, 137, 155, 177, 198, 227, 253, 283, 312, 350, 385, 425, 463, 512, 557, 608, 657, 718, 775, 838, 899, 973, 1043, 1120, 1194, 1283, 1367, 1459, 1548, 1653, 1753, 1861, 1966, 2088, 2205, 2331, 2453
OFFSET
0,4
COMMENTS
The first formula intersperses the terms with zeros, the second formula does not. - Colin Barker, Apr 02 2015
FORMULA
G.f.: (1 +x^8 +x^10 +x^12 +2*x^16 +2*x^20 +x^24 +x^26 +x^28 +x^36)/((1-x^2)*(1-x^6)*(1-x^8)*(1-x^24)), even terms only.
G.f.: (1 -x +x^3 +x^6 -x^7 +2*x^8 -x^9 +x^10 +x^13 -x^15 +x^16)/ ((1-x)^4* (1+x)^2*(1-x+x^2)*(1+x^2)^2*(1+x+x^2)*(1-x^2+x^4)). - Colin Barker, Apr 02 2015
EXAMPLE
G.f. = 1 + x^2 + x^4 + 2*x^6 + 4*x^8 + 5*x^10 + 7*x^12 + ...
MAPLE
S:=series( (1 +x^4 +x^5 +x^6 +2*x^8 +2*x^10 +x^12 +x^13 +x^14 +x^18 )/((1-x)*(1-x^3)*(1-x^4)*(1-x^12)), x, 65): seq(coeff(S, x, j), j=0..60); # G. C. Greubel, Feb 02 2020
MATHEMATICA
CoefficientList[Series[(1 +x^4 +x^5 +x^6 +2*x^8 +2*x^10 +x^12 +x^13 +x^14 +x^18 )/((1-x)*(1-x^3)*(1-x^4)*(1-x^12)), {x, 0, 60}], x] (* G. C. Greubel, Feb 02 2020 *)
PROG
(Magma) // Definition of group:
F<al> := CyclotomicField(24); i := al^6; eta := al^3; s2 := (1+i)/eta; om := al^8; s3 := (2*om+1)/i; s6 := s2*s3; M := GeneralLinearGroup(4, F);
A1 := M![s3/s6, 1/s6, 1/s6, 1/s6, -1/s6, s3/s6, -1/s6, 1/s6, -1/s6, 1/s6, s3/s6, -1/s6, -1/s6, -1/s6, 1/s6, s3/s6 ]; A2 := M![0, 1/s3, 1/s3, 1/s3, -1/s3, 0, -1/s3, 1/s3, -1/s3, 1/s3, 0, -1/s3, -1/s3, -1/s3, 1/s3, 0 ];
B1 := M![ -1, 0, 0, 0, 0, -1, 0, 0, 0, 0, -1, 0, 0, 0, 0, -1 ]; C1 := M![1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0 ];
C2 := M![0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, -1, 1, 0, 0, 0 ]; G := sub<M | A1, A2, B1, C1, C2 >;
(PARI) Vec((x^16-x^15+x^13+x^10-x^9+2*x^8-x^7+x^6+x^3-x+1) / ((x-1)^4*(x+1)^2*(x^2-x+1)*(x^2+1)^2*(x^2+x+1)*(x^4-x^2+1)) + O(x^60)) \\ Colin Barker, Apr 02 2015
(Sage)
def A078404_list(prec):
P.<x> = PowerSeriesRing(ZZ, prec)
return P( (1 +x^4 +x^5 +x^6 +2*x^8 +2*x^10 +x^12 +x^13 +x^14 +x^18 )/((1-x)*(1-x^3)*(1-x^4)*(1-x^12)) ).list()
A078404_list(60) # G. C. Greubel, Feb 02 2020
CROSSREFS
The group in A078411 is a subgroup.
Sequence in context: A193494 A161832 A350592 * A056908 A296344 A060565
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Dec 27 2002
STATUS
approved