

A056900


Numbers n where 36n^2+36n+11 is prime.


9



0, 1, 2, 3, 5, 6, 7, 9, 13, 16, 17, 18, 19, 20, 24, 28, 36, 37, 39, 40, 41, 42, 45, 49, 50, 51, 53, 57, 58, 60, 61, 62, 64, 69, 70, 71, 73, 74, 75, 79, 83, 85, 91, 92, 93, 95, 100, 101, 108, 112, 113, 116, 118, 125, 129, 134, 136, 139, 144
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,3


COMMENTS

36m^2+36m+11=(6m+3)^2+2, i.e. two more than the square of odd multiples of 3. 36m^2+36m+11=72*(m*(m+1)/2)+11, i.e. eleven more than seventytwo times triangular numbers.


LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..1000


FORMULA

a(n) =A002024((A056899(n+2)11)/72)
a(n) = A091199(n+1)  1.  Jeppe Stig Nielsen, May 14 2017


EXAMPLE

a(3)=3 because 36*3^2+36*3+11=443 which is prime


MATHEMATICA

lst={}; Do[If[PrimeQ[36*n^2+36*n+11], AppendTo[lst, n]], {n, 0, 100}]; lst (* Vincenzo Librandi, Jul 14 2012 *)


PROG

(MAGMA) [n: n in [0..200] IsPrime(36*n^2+36*n+11)]; // Vincenzo Librandi, Jul 14 2012


CROSSREFS

This sequence (with the formula above) generates all except the first two terms of the sequence of primes of the form k^2+2, A056899.
Cf. A091199.
Sequence in context: A215798 A074780 A292938 * A226808 A096594 A100693
Adjacent sequences: A056897 A056898 A056899 * A056901 A056902 A056903


KEYWORD

nonn,easy


AUTHOR

Henry Bottomley, Jul 05 2000


STATUS

approved



