

A056906


Numbers k such that 36*k^2 + 5 is prime.


6



0, 1, 2, 6, 8, 12, 13, 16, 19, 21, 27, 28, 33, 34, 41, 43, 49, 56, 57, 62, 69, 72, 76, 77, 82, 84, 86, 89, 92, 96, 98, 99, 104, 111, 119, 121, 126, 128, 131, 132, 133, 134, 139, 142, 146, 148, 153, 159, 166, 168, 169, 173, 174
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,3


COMMENTS

Except for a(1), a(n) is never a multiple of 5.


LINKS

Vincenzo Librandi, Table of n, a(n) for n = 1..1000


FORMULA

a(n) = sqrt(A056905(n)5)/6.


EXAMPLE

a(3)=2 since 36*2^2 + 5 = 149, which is prime.


MATHEMATICA

Select[Range[0, 200], PrimeQ[36#^2+5]&] (* Harvey P. Dale, Jul 25 2011 *)


PROG

(MAGMA) [n: n in [0..200] IsPrime(36*n^2+5)]; // Vincenzo Librandi, Jul 14 2012
(PARI) is(n)=isprime(36*n^2+5) \\ Charles R Greathouse IV, Feb 17 2017


CROSSREFS

This sequence and formula generate all primes of the form k^2+5, i.e., A056905.
Except for the first term, this sequence is a subsequence of A047201.
Cf. A056900, A056902.
Sequence in context: A250190 A244342 A064212 * A257056 A209249 A047238
Adjacent sequences: A056903 A056904 A056905 * A056907 A056908 A056909


KEYWORD

nonn,easy


AUTHOR

Henry Bottomley, Jul 07 2000


EXTENSIONS

Offset corrected by Arkadiusz Wesolowski, Aug 09 2011


STATUS

approved



