OFFSET
1,2
COMMENTS
a(n) = Sum_{k=1..n} gcd(k^2-1, n) for those k that are coprime to n (see proof in link).
LINKS
Robert Israel, Table of n, a(n) for n = 1..10000
László Tóth, Menon's identity and arithmetical sums representing functions of several variables, Rend. Sem. Mat. Univ. Politec. Torino, 69 (2011), 97-110 (see (36) in Corollary 15, p. 108); also on arXiv, arXiv:1103.5861 [math.NT], 2011.
MAPLE
A244342:= proc(n) add(`if`(igcd(k, n)=1, igcd(k^2-1, n), 0), k=1..n) end proc;
seq(A244342(i), i=1..1000); # Robert Israel, Jul 06 2014
MATHEMATICA
h[n_] := Product[{p, e} = pe; Which[OddQ[p], 2 e + 1, p == 2 && e == 1, 2, True, 4 (e - 1)], {pe, FactorInteger[n]}]; h[1] = 1;
a[n_] := EulerPhi[n] h[n];
Array[a, 100] (* Jean-François Alcover, Apr 08 2020 *)
PROG
(PARI) a(n) = sum(j=1, n, gcd(j^2-1, n)*(gcd(j, n)==1));
CROSSREFS
KEYWORD
nonn,mult
AUTHOR
Michel Marcus, Jun 26 2014
STATUS
approved