login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A244342
a(n) = phi(n)*h(n) where phi() is the Euler totient function, A000010, and h() is A092089.
2
1, 2, 6, 8, 12, 12, 18, 32, 30, 24, 30, 48, 36, 36, 72, 96, 48, 60, 54, 96, 108, 60, 66, 192, 100, 72, 126, 144, 84, 144, 90, 256, 180, 96, 216, 240, 108, 108, 216, 384, 120, 216, 126, 240, 360, 132, 138, 576, 210, 200, 288, 288, 156, 252, 360, 576, 324, 168
OFFSET
1,2
COMMENTS
a(n) = Sum_{k=1..n} gcd(k^2-1, n) for those k that are coprime to n (see proof in link).
Multiplicative because both A000010 and A092089 are. - Andrew Howroyd, Jul 26 2018
LINKS
László Tóth, Menon's identity and arithmetical sums representing functions of several variables, Rend. Sem. Mat. Univ. Politec. Torino, 69 (2011), 97-110 (see (36) in Corollary 15, p. 108); also on arXiv, arXiv:1103.5861 [math.NT], 2011.
MAPLE
A244342:= proc(n) add(`if`(igcd(k, n)=1, igcd(k^2-1, n), 0), k=1..n) end proc;
seq(A244342(i), i=1..1000); # Robert Israel, Jul 06 2014
MATHEMATICA
h[n_] := Product[{p, e} = pe; Which[OddQ[p], 2 e + 1, p == 2 && e == 1, 2, True, 4 (e - 1)], {pe, FactorInteger[n]}]; h[1] = 1;
a[n_] := EulerPhi[n] h[n];
Array[a, 100] (* Jean-François Alcover, Apr 08 2020 *)
PROG
(PARI) a(n) = sum(j=1, n, gcd(j^2-1, n)*(gcd(j, n)==1));
CROSSREFS
KEYWORD
nonn,mult
AUTHOR
Michel Marcus, Jun 26 2014
STATUS
approved