login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A130205
a(n) = n^2 - a(n-1) - a(n-2), with a(1) = 1 and a(2) = 2.
2
1, 2, 6, 8, 11, 17, 21, 26, 34, 40, 47, 57, 65, 74, 86, 96, 107, 121, 133, 146, 162, 176, 191, 209, 225, 242, 262, 280, 299, 321, 341, 362, 386, 408, 431, 457, 481, 506, 534, 560, 587, 617, 645, 674, 706, 736, 767, 801, 833, 866, 902, 936, 971, 1009, 1045, 1082
OFFSET
1,2
COMMENTS
Any three consecutive terms sum up to a perfect square. First 9 terms coincide with A076991.
Changing a(1) leaves a(5+3m) constant for m >= 0. Changing a(2) leaves a(4+3m) constant for m >= 0. - Richard R. Forberg, Jun 05 2013
FORMULA
a(1)=1, a(2)=2; n>2: a(n)=n^2-a(n-1)-a(n-2).
G.f.: x*(1+3*x^2-3*x^3+x^4)/(1+x+x^2)/(1-x)^3. - Maksym Voznyy (voznyy(AT)mail.ru), Jul 27 2009; checked and corrected by R. J. Mathar, Sep 16 2009
a(n) = floor((n^2+2*n+1)/3) + 1 - (n mod 3). - Ivan Neretin, May 25 2015
For n>6, a(n)=2*a(n-3)-a(n-6)+6. - Zak Seidov, Aug 05 2016
a(n) = (3*n^2+6*n+1 +8*A049347(n)+7*A049347(n-1))/9.. - R. J. Mathar, Aug 06 2016
EXAMPLE
1+2+6=3^2, 2+6+8=4^2, 6+8+11=5^2.
G.f. = x + 2*x^2 + 6*x^3 + 8*x^4 + 11*x^5 + 17*x^6 + 21*x^7 + 26*x^8 + ...
MAPLE
A130205 := proc(n)
option remember;
if n <= 2 then
n;
else
n^2-procname(n-1)-procname(n-2) ;
end if;
end proc:
seq(A130205(n), n=1..50) ; # R. J. Mathar, Aug 06 2016
MATHEMATICA
a[1]=1; a[2]=2; a[n_]:=a[n]=n^2-a[n-1]-a[n-2]; Table[a[n], {n, 100}]
a[ n_] := Quotient[ (n + 1)^2, 3] + 1 - Mod[n, 3]; (* Michael Somos, Aug 04 2016 *)
PROG
(PARI) a(n)=(n^2+2*n+4)\3 - n%3 \\ Charles R Greathouse IV, Aug 03 2016
CROSSREFS
Sequence in context: A178931 A243184 A076991 * A054067 A250190 A244342
KEYWORD
nonn,easy
AUTHOR
Zak Seidov, May 16 2007
STATUS
approved