login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A130205 a(n) = n^2 - a(n-1) - a(n-2), with a(1) = 1 and a(2) = 2. 2
1, 2, 6, 8, 11, 17, 21, 26, 34, 40, 47, 57, 65, 74, 86, 96, 107, 121, 133, 146, 162, 176, 191, 209, 225, 242, 262, 280, 299, 321, 341, 362, 386, 408, 431, 457, 481, 506, 534, 560, 587, 617, 645, 674, 706, 736, 767, 801, 833, 866, 902, 936, 971, 1009, 1045, 1082 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

Any three consecutive terms sum up to a perfect square. First 9 terms coincide with A076991.

Changing a(1) leaves a(5+3m) constant for m >= 0. Changing a(2) leaves a(4+3m) constant for m >= 0. - Richard R. Forberg, Jun 05 2013

LINKS

Table of n, a(n) for n=1..56.

Index entries for linear recurrences with constant coefficients, signature (2,-1,1,-2,1).

FORMULA

a(1)=1, a(2)=2; n>2: a(n)=n^2-a(n-1)-a(n-2).

G.f.: x*(1+3*x^2-3*x^3+x^4)/(1+x+x^2)/(1-x)^3. - Maksym Voznyy (voznyy(AT)mail.ru), Jul 27 2009; checked and corrected by R. J. Mathar, Sep 16 2009

a(n) = floor((n^2+2*n+1)/3) + 1 - (n mod 3). - Ivan Neretin, May 25 2015

For n>6, a(n)=2*a(n-3)-a(n-6)+6. - Zak Seidov, Aug 05 2016

a(n) = (3*n^2+6*n+1 +8*A049347(n)+7*A049347(n-1))/9.. - R. J. Mathar, Aug 06 2016

EXAMPLE

1+2+6=3^2, 2+6+8=4^2, 6+8+11=5^2.

G.f. = x + 2*x^2 + 6*x^3 + 8*x^4 + 11*x^5 + 17*x^6 + 21*x^7 + 26*x^8 + ...

MAPLE

A130205 := proc(n)

    option remember;

    if n <= 2 then

        n;

    else

        n^2-procname(n-1)-procname(n-2) ;

    end if;

end proc:

seq(A130205(n), n=1..50) ; # R. J. Mathar, Aug 06 2016

MATHEMATICA

a[1]=1; a[2]=2; a[n_]:=a[n]=n^2-a[n-1]-a[n-2]; Table[a[n], {n, 100}]

a[ n_] := Quotient[ (n + 1)^2, 3] + 1 - Mod[n, 3]; (* Michael Somos, Aug 04 2016 *)

PROG

(PARI) a(n)=(n^2+2*n+4)\3 - n%3 \\ Charles R Greathouse IV, Aug 03 2016

CROSSREFS

Cf. A076991, A001840.

Sequence in context: A178931 A243184 A076991 * A054067 A250190 A244342

Adjacent sequences:  A130202 A130203 A130204 * A130206 A130207 A130208

KEYWORD

nonn,easy

AUTHOR

Zak Seidov, May 16 2007

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 2 02:12 EST 2021. Contains 349435 sequences. (Running on oeis4.)