

A047238


Numbers that are congruent to {0, 2} mod 6.


13



0, 2, 6, 8, 12, 14, 18, 20, 24, 26, 30, 32, 36, 38, 42, 44, 48, 50, 54, 56, 60, 62, 66, 68, 72, 74, 78, 80, 84, 86, 90, 92, 96, 98, 102, 104, 108, 110, 114, 116, 120, 122, 126, 128, 132, 134, 138, 140, 144, 146, 150, 152, 156, 158, 162
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


COMMENTS

Complement of A047251, or "Polyrhythmic Sequence" P(2,3); the present sequence represents where the "rests" occur in a "3 against 2" polyrhythm. (See A267027 for definition and description).  Bob Selcoe, Jan 12 2016


LINKS

B. Berselli, Table of n, a(n) for n = 1..10000
Index entries for linear recurrences with constant coefficients, signature (1,1,1).


FORMULA

Contribution from Bruno Berselli, Jun 24 2010: (Start)
G.f.: 2*x*(1+2*x)/((1+x)*(1x)^2).
a(n) = a(n1) +a(n2) a(n3), a(0)=0, a(1)=2, a(2)=6.
a(n) = (6*n(1)^n7)/2.
a(n) = 2*A032766(n1). (End)
a(n)=6*na(n1)10 (with a(1)=0).  Vincenzo Librandi, Aug 05 2010
a(n+1)=Sum_k>=0 {A030308(n,k)*A111286(k+2)}.  From Philippe Deléham, Oct 17 2011
a(n) = 2*floor(3*n/2).  Enrique Pérez Herrero, Jul 04 2012


MATHEMATICA

Select[Range[0, 200], MemberQ[{0, 2}, Mod[#, 6]]&] (* or *) LinearRecurrence[ {1, 1, 1}, {0, 2, 6}, 70] (* Harvey P. Dale, Jun 15 2011 *)


PROG

(PARI) forstep(n=0, 200, [2, 4], print1(n", ")) \\ Charles R Greathouse IV, Oct 17 2011
(MAGMA) [n: n in [0..200]n mod 6 in {0, 2}]; // Vincenzo Librandi, Jan 12 2016


CROSSREFS

Cf. A047270 [(6*n(1)^n1)/2], A047235 [(6*n(1)^n3)/2], A047241 [(6*n(1)^n5)/2].
Cf. A047251, A267027.
Sequence in context: A056906 A257056 A209249 * A189933 A229488 A307699
Adjacent sequences: A047235 A047236 A047237 * A047239 A047240 A047241


KEYWORD

nonn,easy


AUTHOR

N. J. A. Sloane


STATUS

approved



