login
A047236
Numbers that are congruent to {1, 2, 4} mod 6.
4
1, 2, 4, 7, 8, 10, 13, 14, 16, 19, 20, 22, 25, 26, 28, 31, 32, 34, 37, 38, 40, 43, 44, 46, 49, 50, 52, 55, 56, 58, 61, 62, 64, 67, 68, 70, 73, 74, 76, 79, 80, 82, 85, 86, 88, 91, 92, 94, 97, 98, 100, 103, 104, 106, 109, 110, 112, 115, 116, 118, 121, 122, 124
OFFSET
1,2
FORMULA
G.f.: x*(1+x)*(2*x^2+1)/((1+x+x^2)*(x-1)^2). - R. J. Mathar, Oct 08 2011
From Wesley Ivan Hurt, Jun 10 2016: (Start)
a(n) = a(n-1) + a(n-3) - a(n-4) for n>4.
a(n) = (6*n-5-cos(2*n*Pi/3)+sqrt(3)*sin(2*n*Pi/3))/3.
a(3k) = 6k-2, a(3k-1) = 6k-4, a(3k-2) = 6k-5. (End)
Sum_{n>=1} (-1)^(n+1)/a(n) = Pi/6 + log(2+sqrt(3))/(2*sqrt(3)) - log(2)/3. - Amiram Eldar, Dec 14 2021
MAPLE
A047236:=n->(6*n-5-cos(2*n*Pi/3)+sqrt(3)*sin(2*n*Pi/3))/3: seq(A047236(n), n=1..100); # Wesley Ivan Hurt, Jun 10 2016
MATHEMATICA
Select[Range[0, 150], MemberQ[{1, 2, 4}, Mod[#, 6]] &] (* Wesley Ivan Hurt, Jun 10 2016 *)
PROG
(Magma) [n : n in [0..150] | n mod 6 in [1, 2, 4]]; // Wesley Ivan Hurt, Jun 10 2016
CROSSREFS
Sequence in context: A116478 A207829 A207827 * A371638 A039581 A367498
KEYWORD
nonn,easy
STATUS
approved