OFFSET
1,1
COMMENTS
Apart from initial term(s), dimension of the space of weight 2n cuspidal newforms for Gamma_0( 19 ).
One could prefix an initial term "1" (or not) and define this sequence through a(n+1) = a(n) + (a(n) mod 6). See A001651 for the analog with 3, A235700 (with 5), A047350 (with 7), A007612 (with 9) and A102039 (with 10). Using 4 or 8 yields a constant sequence from that term on. - M. F. Hasler, Jan 14 2014
Nonnegative m such that m^2/6 + 1/3 is an integer. - Bruno Berselli, Apr 13 2017
Numbers divisible by 2 but not by 3. - David James Sycamore, Apr 04 2018
Numbers k for which A276086(k) is of the form 6m+3. - Antti Karttunen, Dec 03 2022
LINKS
David A. Corneth, Table of n, a(n) for n = 1..10000
Chunhui Lai, A note on potentially K_4-e graphical sequences, arXiv:math/0308105 [math.CO], 2003.
William A. Stein, The modular forms database.
Index entries for linear recurrences with constant coefficients, signature (1,1,-1).
FORMULA
a(n) = 2*A001651(n).
n such that phi(3*n) = phi(2*n). - Benoit Cloitre, Aug 06 2003
G.f.: 2*x*(1 + x + x^2)/((1 + x)*(1 - x)^2). a(n) = 3*n - 3/2 - (-1)^n/2. - R. J. Mathar, Nov 22 2008
a(n) = 3*n + 5..n odd, 3*n + 4..n even a(n) = 6*floor((n+1)/2) + 3 + (-1)^n. - Gary Detlefs, Mar 02 2010
a(n) = 6*n - a(n-1) - 6 (with a(1) = 2). - Vincenzo Librandi, Aug 05 2010
a(n+1) = a(n) + (a(n) mod 6). - M. F. Hasler, Jan 14 2014
Sum_{n>=1} 1/a(n)^2 = Pi^2/27. - Dimitris Valianatos, Oct 10 2017
a(n) = (6*n - (-1)^n - 3)/2. - Ammar Khatab, Aug 23 2020
Sum_{n>=1} (-1)^(n+1)/a(n) = Pi/(6*sqrt(3)). - Amiram Eldar, Dec 11 2021
E.g.f.: 2 + ((6*x - 3)*exp(x) - exp(-x))/2. - David Lovler, Aug 25 2022
From Amiram Eldar, Nov 22 2024: (Start)
Product_{n>=1} (1 - (-1)^n/a(n)) = 2/sqrt(3) (10 * A020832).
Product_{n>=1} (1 + (-1)^n/a(n)) = 1/sqrt(3) (A020760). (End)
MAPLE
seq(6*floor((n+1)/2) + 3 + (-1)^n, n=1..67); # Gary Detlefs, Mar 02 2010
MATHEMATICA
Flatten[Table[{6n - 4, 6n - 2}, {n, 40}]] (* Alonso del Arte, Oct 27 2014 *)
PROG
(Magma) [ n eq 1 select 2 else Self(n-1)+2*(1+n mod 2): n in [1..70] ]; // Klaus Brockhaus, Dec 13 2008
(PARI) a(n)=(n-1)\2*6+3+(-1)^n \\ Charles R Greathouse IV, Jul 01 2013
(PARI) first(n) = my(v = vector(n, i, 3*i - 1)); forstep(i = 2, n, 2, v[i]--); v \\ David A. Corneth, Oct 20 2017
CROSSREFS
Equals 2*A001651.
Cf. A007310 ((6*n+(-1)^n-3)/2). - Bruno Berselli, Jun 24 2010
KEYWORD
nonn,easy
AUTHOR
STATUS
approved