login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A093719
a(n) = (n mod 2)^(n mod 3).
5
1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1
OFFSET
0,1
COMMENTS
This is a periodic sequence with period 6. The repeating block is 1,1,0,1,0,1. - Michel Dekking, Sep 19 2020
FORMULA
a(n) = A000035(n)^A010872(n).
a(A047273(n)) = 1, a(A047235(n)) = 0. [Reinhard Zumkeller, Oct 01 2008]
G.f.: -(x^5 + x^3 + x + 1)/(x^6 - 1). - Colin Barker, Apr 01 2013
E.g.f.: (2*cos(sqrt(3)*x/2)*cosh(x/2) + cosh(x))/3 + sinh(x). - Stefano Spezia, Jul 26 2024
MAPLE
A093719:=n->(n mod 2)^(n mod 3): seq(A093719(n), n=0..40); # Wesley Ivan Hurt, Oct 13 2014
MATHEMATICA
PadRight[{}, 120, {1, 1, 0, 1, 0, 1}] (* Harvey P. Dale, Jun 26 2021 *)
PROG
(Magma) [(n mod 2)^(n mod 3): n in [0..100]]; // Wesley Ivan Hurt, Oct 13 2014
(PARI) A093719(n) = ((n%2)^(n%3)); \\ Antti Karttunen, Dec 19 2018
(GAP) List([0..120], n->(n mod 2)^(n mod 3)); # Muniru A Asiru, Dec 19 2018
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Reinhard Zumkeller, Apr 12 2004
STATUS
approved