The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A093721 Decimal expansion of Sum_{n>=1} zeta(2n)/(2n)!. 4
 8, 6, 9, 0, 0, 1, 9, 9, 1, 9, 6, 2, 9, 0, 8, 9, 9, 8, 8, 1, 1, 0, 5, 4, 8, 0, 5, 5, 6, 1, 3, 9, 5, 6, 8, 8, 8, 9, 2, 4, 9, 4, 8, 4, 1, 8, 8, 0, 5, 7, 7, 8, 5, 0, 7, 1, 0, 6, 4, 5, 7, 7, 8, 5, 6, 0, 6, 7, 4, 6, 0, 9, 5, 5, 4, 2, 5, 8, 0, 1, 3, 5, 8, 7, 6, 7, 1, 9, 6, 4, 5, 9, 3, 3, 5, 3, 8, 1, 1, 8, 0, 9 (list; constant; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 LINKS G. C. Greubel, Table of n, a(n) for n = 0..10000 J. Sondow and E. W. Weisstein, MathWorld: Riemann Zeta Function FORMULA Equals Sum_{k>=1} (cosh(1/k) - 1). - Vaclav Kotesovec, Mar 04 2016 EXAMPLE 0.86900199196290899881105480556139568889249484188057785071064577856... MAPLE evalf(Sum(cosh(1/n)-1, n=1..infinity), 120); # Vaclav Kotesovec, Mar 04 2016 MATHEMATICA digits = 105; z[k_] := z[k] = z[k-1] + N[Sum[Zeta[2n]/(2n)!, {n, 2^(k-1) + 1, 2^k}], digits]; z[0] = N[Pi^2/12, digits]; rd[k_] := rd[k] = RealDigits[z[k]][[1]]; rd[0]; rd[k = 1]; While[rd[k] != rd[k-1], k++]; rd[k] (* Jean-François Alcover, Nov 09 2012 *) PROG (PARI) suminf(n=1, zeta(2*n)/(2*n)!) \\ Michel Marcus, Mar 20 2017 CROSSREFS Cf. A076813, A093720, A269574, A269611. Sequence in context: A088541 A110214 A305709 * A091506 A021539 A084893 Adjacent sequences:  A093718 A093719 A093720 * A093722 A093723 A093724 KEYWORD nonn,cons AUTHOR Eric W. Weisstein, Apr 12 2004 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 30 23:12 EDT 2021. Contains 346365 sequences. (Running on oeis4.)