This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A093720 Decimal expansion of Sum_{n >= 2} zeta(n)/n!. 4
 1, 0, 7, 8, 1, 8, 8, 7, 2, 9, 5, 7, 5, 8, 1, 8, 4, 8, 2, 7, 5, 8, 2, 6, 5, 4, 3, 6, 7, 6, 9, 8, 3, 2, 3, 8, 1, 7, 0, 7, 2, 1, 9, 6, 0, 9, 6, 7, 2, 3, 4, 7, 1, 6, 0, 0, 3, 7, 1, 7, 0, 2, 0, 7, 8, 0, 0, 7, 1, 5, 2, 3, 0, 0, 3, 2, 7, 8, 4, 3, 4, 8, 6, 5, 6, 7, 6, 7, 6, 8, 0, 8, 8, 5, 8, 2, 9, 0, 1 (list; constant; graph; refs; listen; history; text; internal format)
 OFFSET 1,3 LINKS G. C. Greubel, Table of n, a(n) for n = 1..10000 J. Sondow and E. W. Weisstein, MathWorld: Riemann Zeta Function FORMULA Equals Sum_{k>=1} (exp(1/k) - 1 - 1/k). - Vaclav Kotesovec, Mar 04 2016 EXAMPLE 1.078188729575818482758265436769832381707219... MAPLE evalf(Sum(exp(1/n)-1-1/n, n=1..infinity), 120); # Vaclav Kotesovec, Mar 04 2016 MATHEMATICA digits = 99; ClearAll[z, rd]; z[k_] := z[k] = z[k-1] + N[Sum[Zeta[n]/n!, {n, 2^(k-1) + 1, 2^k}], digits]; z[0] = 0; rd[k_] := rd[k] = RealDigits[z[k]][[1]]; rd[0]; rd[k = 1]; While[ rd[k] != rd[k-1], k++]; rd[k] (* Jean-François Alcover, Nov 09 2012 *) PROG (PARI) suminf(n=2, zeta(n)/n!) \\ Michel Marcus, Mar 15 2017 CROSSREFS Cf. A076813, A093721, A269574, A269611, A269720, A269768. Sequence in context: A019936 A086724 A268979 * A154216 A258947 A216207 Adjacent sequences:  A093717 A093718 A093719 * A093721 A093722 A093723 KEYWORD nonn,cons AUTHOR Eric W. Weisstein, Apr 12 2004 EXTENSIONS Corrected by Fredrik Johansson, Mar 19 2006 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified November 17 08:17 EST 2018. Contains 317275 sequences. (Running on oeis4.)