login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A093718
a(n) = (n mod 3)^(n mod 2).
3
1, 1, 1, 0, 1, 2, 1, 1, 1, 0, 1, 2, 1, 1, 1, 0, 1, 2, 1, 1, 1, 0, 1, 2, 1, 1, 1, 0, 1, 2, 1, 1, 1, 0, 1, 2, 1, 1, 1, 0, 1, 2, 1, 1, 1, 0, 1, 2, 1, 1, 1, 0, 1, 2, 1, 1, 1, 0, 1, 2, 1, 1, 1, 0, 1, 2, 1, 1, 1, 0, 1, 2, 1, 1, 1, 0, 1, 2, 1, 1, 1, 0, 1, 2, 1, 1, 1, 0, 1, 2, 1, 1, 1, 0, 1, 2, 1, 1, 1, 0, 1, 2
OFFSET
0,6
COMMENTS
Period 6: repeat [1, 1, 1, 0, 1, 2]. - Joerg Arndt, Jun 09 2013
FORMULA
a(n) = A010872(n)^A000035(n).
G.f.: ( -1-x^2-2*x^4+x^3 ) / ( (x-1)*(1-x+x^2)*(1+x+x^2) ). - R. J. Mathar, Jun 09 2013
a(n) = (n + 3) mod (2 + n mod 2) - Wesley Ivan Hurt, Aug 16 2014
From Wesley Ivan Hurt, Jun 23 2016: (Start)
a(n) = cos(n*Pi/6) * (6*cos(n*Pi/6)-3*cos(n*Pi/2)-sqrt(3)*sin(n*Pi/2))/3.
a(n) = a(n-1) - a(n-2) + a(n-3) - a(n-4) + a(n-5).
a(n) = a(n-6) for n>5. (End)
E.g.f.: cosh(x) - cosh(x/2)*sin(sqrt(3)*x/2)/sqrt(3) + cos(sqrt(3)*x/2)*sinh(x/2) + sinh(x). - Stefano Spezia, Jul 26 2024
MAPLE
A093718:=n->(n mod 3)^(n mod 2): seq(A093718(n), n=0..100); # Wesley Ivan Hurt, Aug 16 2014
MATHEMATICA
Table[Mod[n + 3, 2 + Mod[n, 2]], {n, 0, 100}] (* Wesley Ivan Hurt, Aug 16 2014 *)
LinearRecurrence[{1, -1, 1, -1, 1}, {1, 1, 1, 0, 1}, 120] (* Harvey P. Dale, Jan 17 2021 *)
PROG
(Magma) &cat [[1, 1, 1, 0, 1, 2]^^20]; // Wesley Ivan Hurt, Jun 23 2016
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Reinhard Zumkeller, Apr 12 2004
STATUS
approved