OFFSET
0,1
COMMENTS
An example of a d-perfect sequence.
Concatenation of the bit sequences 1, 10, 1011, 10111010, 1011101010111011, ... used in a construction of A035263 (see Comment there by Benoit Cloitre). - David Callan, Oct 08 2005
Image, under the coding a,b,d -> 1, c -> 0, of the fixed point, starting with a, of the morphism a -> ab, b -> cd, c -> cd, d -> bb. - Jeffrey Shallit, May 15 2016
LINKS
Antti Karttunen, Table of n, a(n) for n = 0..65537
Martin Klazar and Florian Luca, On integrality and periodicity of the Motzkin numbers.
Martin Klazar and Florian Luca, On integrality and periodicity of the Motzkin numbers, Aequationes Math. 69 (2005), no. 1-2, 68-75.
D. Kohel, S. Ling and C. Xing, Explicit Sequence Expansions
D. Kohel, S. Ling and C. Xing, Explicit Sequence Expansions, Sequences and their Applications, Discrete Mathematics and Theoretical Computer Science 1999, pp 308-317.
FORMULA
a(n) = A090344(n) mod 2. - Christian G. Bower, Jun 12 2005
EXAMPLE
The first few S(i) are:
S(0) = 1
S(1) = 1.10 = 110
S(2) = 1.101011 = 1101011
S(3) = 1.10101110111010 = 110101110111010
...
MATHEMATICA
substitutionRule={1->{1, 0}, 0->{1, 1}}; makeSubstitution[seq_]:=Flatten[seq/.substitutionRule]; Flatten[NestList[makeSubstitution, {1}, 5]]
NestList[Flatten[ # /. {0 -> {1, 1}, 1 -> {1, 0}}] &, {1}, 6] // Flatten (* Robert G. Wilson v, Mar 29 2006 *)
PROG
(PARI) a(n)=my(A=1+x); for(i=1, n, A=1/(1-x+x*O(x^n))+x^2*A^2+x*O(x^n)); polcoeff(A, n)%2 \\ Charles R Greathouse IV, Feb 04 2013
(PARI)
up_to = 16384;
A090344list(up_to) = { my(v=vector(up_to)); v[1] = 1; v[2] = 2; v[3] = 3; for(n=4, up_to, v[n] = ((2*n+2)*v[n-1] -(4*n-6)*v[n-3] +(3*n-4)*v[n-2])/(n+2)); (v); };
v090344 = A090344list(up_to);
A090344(n) = if(!n, 1, v090344[n]);
(GAP) b:=[1, 1, 2];; for n in [4..120] do b[n]:=(1/(n+1))* (2*n*b[n-1]+(3*n-7)*b[n-2]-(4*n-10)*b[n-3]);; od; a:=b mod 2; # Muniru A Asiru, Sep 28 2018
CROSSREFS
KEYWORD
nonn
AUTHOR
EXTENSIONS
More terms from Christian G. Bower, Jun 12 2005
Offset corrected from 1 to 0 by Antti Karttunen, Sep 27 2018
Entry revised by N. J. A. Sloane, Feb 23 2019
STATUS
approved