login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numbers that are congruent to {0, 2} mod 6.
14

%I #79 Jul 12 2022 20:59:04

%S 0,2,6,8,12,14,18,20,24,26,30,32,36,38,42,44,48,50,54,56,60,62,66,68,

%T 72,74,78,80,84,86,90,92,96,98,102,104,108,110,114,116,120,122,126,

%U 128,132,134,138,140,144,146,150,152,156,158,162

%N Numbers that are congruent to {0, 2} mod 6.

%C Complement of A047251, or "Polyrhythmic Sequence" P(2,3); the present sequence represents where the "rests" occur in a "3 against 2" polyrhythm. (See A267027 for definition and description). - _Bob Selcoe_, Jan 12 2016

%H Bruno Berselli, <a href="/A047238/b047238.txt">Table of n, a(n) for n = 1..10000</a>

%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (1,1,-1).

%F From _Bruno Berselli_, Jun 24 2010: (Start)

%F G.f.: 2*x*(1+2*x)/((1+x)*(1-x)^2).

%F a(n) = a(n-1) + a(n-2) - a(n-3), a(0)=0, a(1)=2, a(2)=6.

%F a(n) = (6*n - (-1)^n-7)/2.

%F a(n) = 2*A032766(n-1). (End)

%F a(n) = 6*n - a(n-1) - 10 (with a(1)=0). - _Vincenzo Librandi_, Aug 05 2010

%F a(n+1) = Sum_{k>=0} A030308(n,k)*A111286(k+2). - _Philippe Deléham_, Oct 17 2011

%F a(n) = 2*floor(3*n/2). - _Enrique Pérez Herrero_, Jul 04 2012

%F Sum_{n>=2} (-1)^n/a(n) = sqrt(3)*Pi/36 + log(3)/4. - _Amiram Eldar_, Dec 13 2021

%F E.g.f: 3*(x-1)*exp(x) - cosh(x) + 4. - _David Lovler_, Jul 11 2022

%t Select[Range[0,200],MemberQ[{0,2},Mod[#,6]]&] (* or *) LinearRecurrence[ {1,1,-1},{0,2,6},70] (* _Harvey P. Dale_, Jun 15 2011 *)

%o (PARI) forstep(n=0,200,[2,4],print1(n", ")) \\ _Charles R Greathouse IV_, Oct 17 2011

%o (Magma) [n: n in [0..200]|n mod 6 in {0,2}]; // _Vincenzo Librandi_, Jan 12 2016

%Y Cf. A047270 [(6*n-(-1)^n-1)/2], A047235 [(6*n-(-1)^n-3)/2], A047241 [(6*n-(-1)^n-5)/2].

%Y Cf. A047251, A267027.

%K nonn,easy

%O 1,2

%A _N. J. A. Sloane_