login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A056914
a(n) = Lucas(4*n+1).
9
1, 11, 76, 521, 3571, 24476, 167761, 1149851, 7881196, 54018521, 370248451, 2537720636, 17393796001, 119218851371, 817138163596, 5600748293801, 38388099893011, 263115950957276, 1803423556807921, 12360848946698171
OFFSET
0,2
COMMENTS
a(n) = (t(i+4n+1) - t(i))/(t(i+2n+1) - t(i+2n)), where (t) is any sequence of the form t(n+2) = 4t(n+1) - 4t(n) + t(n-1) or of the form t(n+1) = 3t(n) - t(n-1) without regard to initial values as long as t(i+2n+1) - t(i+2n) != 0. - Klaus Purath, Jun 24 2024
REFERENCES
V. E. Hoggatt, Jr., Fibonacci and Lucas Numbers, A Publication of the Fibonacci Association, Houghton Mifflin Co., 1969, pp. 27-29.
FORMULA
a(n) = 7*a(n-1) - a(n-2), with a(0)=1, a(1)=11.
a(n) = (11*(((7+3*sqrt(5))/2)^n - ((7-3*sqrt(5))/2)^n) - (((7+3*sqrt(5))/2)^(n-1) - ((7-3*sqrt(5))/2)^(n-1)))/3*sqrt(5).
G.f.: (1+4*x)/(1-7*x+x^2). - Philippe Deléham, Nov 02 2008
MAPLE
with(combinat); seq(fibonacci(4*n+2)+fibonacci(4*n), n = 0..30); # G. C. Greubel, Jan 16 2020
MATHEMATICA
LucasL[4*Range[0, 30]+1] (* or *) LinearRecurrence[{7, -1}, {1, 11}, 30] (* G. C. Greubel, Dec 24 2017 *)
PROG
(PARI) my(x='x+O('x^30)); Vec((1+4*x)/(1-7*x+x^2)) \\ G. C. Greubel, Dec 24 2017
(Magma) [Lucas(4*n+1): n in [0..30]]; // G. C. Greubel, Dec 24 2017
(Sage) [lucas_number2(4*n+1, 1, -1) for n in (0..30)] # G. C. Greubel, Jan 16 2020
(GAP) List([0..30], n-> Lucas(1, -1, 4*n+1)[2] ); # G. C. Greubel, Jan 16 2020
CROSSREFS
Cf. (A056914) = sqrt{5*(A033889)^2 - 4}.
Cf. quadrisection of A000032: A056854 (first), this sequence (second), A246453 (third, without 11), A288913 (fourth).
Sequence in context: A034269 A256597 A245561 * A232032 A272395 A305727
KEYWORD
easy,nonn
AUTHOR
Barry E. Williams, Jul 11 2000
STATUS
approved