login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A288913
a(n) = Lucas(4*n + 3).
5
4, 29, 199, 1364, 9349, 64079, 439204, 3010349, 20633239, 141422324, 969323029, 6643838879, 45537549124, 312119004989, 2139295485799, 14662949395604, 100501350283429, 688846502588399, 4721424167835364, 32361122672259149, 221806434537978679, 1520283919093591604
OFFSET
0,1
COMMENTS
a(n) mod 4 gives A101000.
FORMULA
G.f.: (4 + x)/(1 - 7*x + x^2).
a(n) = 7*a(n-1) - a(n-2) for n>1, with a(0)=4, a(1)=29.
a(n) = ((sqrt(5) + 1)^(4*n + 3) - (sqrt(5) - 1)^(4*n + 3))/(8*16^n).
a(n) = Fibonacci(4*n+4) + Fibonacci(4*n+2).
a(n) = 4*A004187(n+1) + A004187(n).
a(n) = 5*A003482(n) + 4 = 5*A081016(n) - 1.
a(n) = A002878(2*n+1) = A093960(2*n+3) = A001350(4*n+3) = A068397(4*n+3).
a(n+1)*a(n+k) - a(n)*a(n+k+1) = 15*Fibonacci(4*k). Example: for k=6, a(n+1)*a(n+6) - a(n)*a(n+7) = 15*Fibonacci(24) = 695520.
MATHEMATICA
LucasL[4 Range[0, 21] + 3]
LinearRecurrence[{7, -1}, {4, 29}, 30] (* G. C. Greubel, Dec 22 2017 *)
PROG
(PARI) Vec((4 + x)/(1 - 7*x + x^2) + O(x^30)) \\ Colin Barker, Jun 20 2017
(Sage)
def L():
x, y = -1, 4
while True:
yield y
x, y = y, 7*y - x
r = L(); [next(r) for _ in (0..21)] # Peter Luschny, Jun 20 2017
(Magma) [Lucas(4*n + 3): n in [0..30]]; // G. C. Greubel, Dec 22 2017
(Python)
from sympy import lucas
def a(n): return lucas(4*n + 3)
print([a(n) for n in range(22)]) # Michael S. Branicky, Apr 29 2021
CROSSREFS
Cf. A033891: fourth quadrisection of A000045.
Partial sums are in A081007 (after 0).
Positive terms of A098149, and subsequence of A001350, A002878, A016897, A093960, A068397.
Quadrisection of A000032: A056854 (first), A056914 (second), A246453 (third, without 11), this sequence (fourth).
Sequence in context: A121191 A129587 A143551 * A100022 A001883 A281600
KEYWORD
nonn,easy
AUTHOR
Bruno Berselli, Jun 19 2017
STATUS
approved